
Iraqi J Pharm Sci, Vol.30(1) 2021                                                              Pathogenesis of obesity-related glomerulopathy   

DOI : https://doi.org/10.31351/vol30iss1pp22-28                                                                                                         

 

22 

 

The Pathological Mechanisms of Obesity-Related Glomerulopathy: A 

review article 
Ali A. Kasim*,1 and Ahmed H. Ataimish** 

*Department of Clinical Laboratory Sciences, College of Pharmacy, University of Baghdad; Baghdad-Iraq 
** Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad; Baghdad-Iraq 
 

Abstract  
The rising prevalence of obesity-related glomerulopathy (ORG) occurs in concordance with the rising 

prevalence of obesity worldwide. Clinically ORG is manifested by slowly progressing microalbuminuria that may 

develop to clinically evident proteinuria. Pathological characteristics of ORG include; glomerular hypertrophy in 

the presence or absence of focal segmental glomerulosclerosis (FSGS). ORG can develop into clinically overt 

chronic renal insufficiency or even end-stage kidney disease. This article reviews the most important mechanisms 

involved in the development of ORG; that are related to alteration of renal hemodynamics, stimulation of renin-

angiotensin-aldosterone system (RAAS), impairment of insulin sensitivity, ectopic lipid deposition, adipose tissue 

cytokine disorder and local renal micro-inflammation.  
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 الاليات المرضية لاعتلال الكبيبات البولية المرتبط بالسمنة : مقال مراجعة 
 علي عبد الحسين قاسم *،1 و احمد حامد اطيمش**

 * فرع العلوم المختبرية السريرية ، كلية الصيدلة ، جامعة بغداد ، بغداد ، العراق .
 جامعة بغداد ، بغداد ، العراق . فرع العلوم المختبرية السريرية ، كلية الصيدلة ،**

 

  الخلاصة
 سريرياً يتجلى .العالميحدث بالتوافق مع انتشار السمنة في جميع أنحاء  بالسمنةالمرتبط  البولية إن الانتشار المتزايد لاعتلال الكبيبات

تشمل . سريرياً ظاهرةبروتينية بيلة التي قد تتطور إلى والتقدم  ئةبحدوث البيلة الألبومينية الدقيقة بطي بالسمنةالمرتبط  البولية اعتلال الكبيبات

يمكن و. تصلب كبيبات مقطعي بؤري بانعدام وجودأو  البولية بوجود تضخم الكبيبات بالسمنةالمرتبط  البولية عتلال الكبيباتالخصائص المرضية لا

  .لمرض الكلىالنهائية رحلة سريرياً أو حتى الم واضحإلى قصور كلوي مزمن  هذا الاعتلال أن يتطور

 -وتحفيز نظام الرينين  الطبيعية،ديناميكا الدم الكلوية غير  وتشمل؛ اعتلال الكبيبات البولية المرتبط بالسمنة هذه المقالة تستعرض أهم الآليات لتطور

اخيرا و نسيج الدهنيال سايتوكينات، واضطراب  خارج النسيج الدهني، وضعف حساسية الأنسولين ، وترسب الدهون   ألدوستيرون -أنجيوتنسين 

 .الالتهاب الدقيق الموضعي الكلوي
 ،اضطرابات التمثيل الغذائي للدهون،  مقاومة الأنسولين ؛ألدوستيرون -أنجيوتنسين -نظام رينين ،المرتبط بالسمنةالكبيبات البولية اعتلال : الكلمات المفتاحية

 الالتهاب

Introduction   
Obesity represents a global public health 

problem.  According to the World Health 

Organization (WHO) estimations in 2016, the 

overweight population worldwide accounted for 

approximately 1.9 billion adults, of which 

approximately 650 million are obese (1). Obesity is 

not just over nutrition, but it is closely related to 

many diseases.  

Pathologically, ORG is usually manifested 

by glomerular hypertrophy, with focal segmental 

glomerulosclerosis (FSGS), occurring in obese 

individuals (2). ORG usually has an insidious onset, 

manifested by slowly progressing microalbuminuria 

or clinically evident proteinuria, with or without 

impairment of renal function, and a small number of 

patients have microscopic hematuria or nephrotic 

syndrome (3). 

 
 The prevalence of obesity-related 

glomerulopathy (ORG) increases in parallel with the 

increasing prevalence of obesity (3). The incidence of 

ORG is not well documented due to the variation in 

renal biopsy policy between different countries, and 

because ORG can occur without overt signs or 

symptoms (4). Keeping in mind that in obese patients 

with diabetes mellitus, it cannot be determined 

whether diabetes or obesity is the principal cause of 

proteinuria. In a large-scale retrospective study 

evaluating kidney biopsies, Kambham et al. has 

recorded a tenfold increase in the prevalence of 

ORG over 15 years (5). 
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Obesity is involved as an independent risk 

factor in the development of chronic kidney disease 

(CKD) (6), thus, ORG has attracted increasing 

attention. This article discusses the pathogenesis of 

ORG. 
 

Pathogenesis of ORG 

Several mechanisms may contribute to the 

development of ORG; and these mechanisms are 

mostly interconnected:   

Alteration of renal hemodynamics  

Obesity alters the renal blood flow; both 

the glomerular filtration rate (GFR) and the filtration 

fraction increases in obese individuals regardless of 

blood pressure (7). The elevated GFR and filtration 

fraction increases protein concentration in the post-

glomerular peritubular capillaries with the 

subsequent increase in oncotic pressure within these 

capillaries, and hence, increases sodium 

reabsorption from the proximal tubules (7). 

Moreover, increased activity of the renin-

angiotensin-aldosterone system (RAAS) is reported 

in obese individuals (8-10); an effect that is mediated 

by increased synthesis of renin and renin precursors 

by adipose tissue (8). Angiotensin II promotes 

luminal Na+-H+ exchange and basolateral Na+-K+ 

ATPase action, activating the epithelial sodium 

channel (ENaC), with the subsequent increase in 

sodium reabsorption (11).  Sodium reabsorption 

diminishes solute transfer to macula densa leading 

to inactivation of the tubuloglomerular feedback and 

dilation of the glomerular afferent arterioles, i.e. 

increasing GFR (12). In addition to its effect on 

proximal tubular sodium reabsorption, angiotensin 

II has direct vasoconstrictor effect on the glomerular 

arterioles. The vasoconstrictor effect of angiotensin 

II on the efferent arteriole is greater than the afferent 

arteriole, increasing the GFR. In addition, other 

dietary factors such as high-salt diet and high-

protein diet may increase GFR in obese patients (13).  

Finally, visceral adiposity imposes physical pressure 

on the visceral organs including the kidneys, with 

the consequence of elevated intrarenal pressure that 

compresses the loop of Henle and peritubular 

capillaries reducing the flow of glomerular filtrate 

through the renal tubules promoting sodium 

reabsorption by them(14, 15). 

Long-term high perfusion and high 

filtration increase the pressure within the glomerular 

capillaries, and thus, endothelial cells, epithelial 

cells and mesangial cells damage, which further 

leads to proteinuria, glomerular hypertrophy, 

segmental sclerosis, and interstitial fibrosis. This 

can be mediated by a variety of transmitters, 

including angiotensin II, angiotensin receptor 

(ATR), transforming growth factor beta (TGF-beta), 

TGF-β receptor and phospholipase D (16).  
 

Renin-Angiotensin-Aldosterone System activation  

As discussed earlier RAAS is overactivated 

in obese individuals (8-10), and beside the 

aforementioned effects of this system on renal 

perfusion, it participates in renal endothelial cell 

dysfunction and proteinuria, increased inflammation 

and tissue fibrosis. These detrimental effects are 

mediated by several mediators such as matrix 

metalloproteases, cyclooxygenase 2 (COX-2), 

endothelial nitric oxide synthase (eNOS), reactive 

oxygen species (ROS), and many cytokines (17-22).  
 

Insulin resistance  

Several hypotheses were proposed to 

explain the link between obesity and insulin 

resistance, such as inflammation, mitochondrial 

dysfunction, lipotoxicity and most importantly 

hyperinsulinemia. These entire hypotheses are 

centered on interrupting of insulin signaling (23, 24).  
In insulin resistance, the body secretes 

compensatively elevated levels of insulin. 

Hyperinsulinemia has been reported to promote the 

synthesis of growth factors including  insulin-like 

growth factor-1 (IGF-1) and IGF-2 and transforming 

growth factor-β1 (TGF-β1), which hasten 

extracellular matrix deposition aiding in glomerular 

hypertrophy and fibrosis (25, 26). Moreover, 

hyperinsulinemia increases renal tubular 

reabsorption of uric acid via GLUT9 transporter (27). 

Also, hyperinsulinemia stimulates hepatic 

lipoprotein synthesis resulting in hyperlipidemia 

with the subsequent increase in the need for NADPH 

that is met by the de novo purine nucleotide 

synthesis, speeding uric acid production (28). 

Hyperuricemia contributes to renal inflammation (29, 

30), vascular endothelial dysfunction (31, 32), fibrosis 
(33), glomerulosclerosis (34, 35) and proteinuria (36, 37). 

Binding of insulin to its receptor on the 

podocytes is essential to regulate morphological 

adaptation of podocytes in response to changes in 

capillary pressure and GFR after meal (38). 

Accumulation of non-esterified fatty acids (NEFA) 

in podocytes in obese individuals impairs insulin 

signaling and induces apoptosis. The remaining 

podocytes become hypertrophic to compensate for 

the destroyed ones (39, 40). Renal gluconeogenesis is 

activated in the context of insulin resistance. In 

response to the renal hemodynamic and metabolic 

changes in obesity, the proximal tubules become 

hypertrophic (41); an effect mediated by the 

activation of mammalian target of rapamycin 

complex 1 (mTORC1) in the proximal tubules cells. 

Insulin activation mTORC1, promote lipid 

synthesis, angiogenesis, protein synthesis, cellular 

growth (42). Chen et al. has reported that the 

homeostatic model assessment of insulin resistance 
(HOMA-IR) index, the most commonly used 

measure of insulin resistance, to be significantly 

correlated with the prevalence of ORG and with 

proteinuria; and suggested the screening for this 

index as predictive marker for renal damage in obese 

individuals (43). 
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Ectopic lipid deposition  

Ectopic lipid deposition within mesangial 

cells results in foam cell formation and glomerular 

hypertrophy. Mesangial cells are exposed 

lipoproteins as no basement membrane separates 

them from the glomerular endothelium (40). 

Endothelial dysfunction results in lipoprotein 

outflow to mesangial cells; beside, the phagocytic 

functions of mesangial cells that make them engulf 

various lipid particles. Lipoproteins enter mesangial 

cells via binding to the low-density lipoprotein 

(LDL) receptors, while, long-chain fatty acids enter 

via scavenger receptors (44). Lipoprotein lipase 

hydrolyzes lipoproteins releasing triacylglycerols 
(45). LDL receptor feedback, which important in 

preventing cellular cholesterol accumulation, is 

disrupted by the micro-inflammatory status in 

obesity, causing unrestricted lipid buildup (46). The 

deposited lipids in mesangial cells result in the 

formation of foam cells and loss of contractile 

function, leading to reduced structural integrity of 

glomerular arterioles and glomerular hypertrophy 
(40). 

Lipid deposition in podocytes and proximal tubular 

cells due to the impairment of insulin signaling is 

discussed above.  
 

Adipose tissue cytokines disorder  

The function of adipose tissue is not limited 

to lipid storage and energy supply; it is considered 

as an endocrine organ that secretes many cytokines 

(adipokines) involved in regulation many biological 

functions and implicated in the pathogenesis of 

several organ specific diseases, including renal 

diseases (47). The adipo-renal axis is important for 

normal renal functions along with the response of 

the kidney to injury. Obesity is associated with 

dysregulated synthesis and release of a number of 

adipokines (48). Many of these adipokines have been 

reported to disrupt renal cells’ functions in vitro, 

which might mediate ORG (49, 50).  

Adipokines whether those produced by the 

peripheral adipose tissue or those produced by the 

renal adipose tissue contribute to ORG in obese 

patients. Leptin and adiponectin have both non-

inflammatory and inflammatory roles in this regard. 

The roles of pro-inflammatory adipokines will be 

discussed separately with the role of micro-

inflammation in ORG.       
Leptin is mainly produced by white 

adipose tissue, and acts to regulate energy-related 

metabolism. Obese individuals are in a state of 

hyperleptinemia and leptin resistance that are shown 

to be independently associated with insulin 

resistance (51). Both indirect and direct actions of 

leptin contributes to the development of ORG in 

obese individuals. Binding of leptin to its functional 

brain receptor (Ob-Rb) activates the sympathetic 

nervous system, increasing blood pressure, renal 

blood flow and GFR (52, 53). While, binding of leptin 

with glomerular leptin receptor (Ob-Ra), increases 

expression of glomerular transforming growth 

factor-β1 (TGF-β1), leading to an increase in the 

synthesis of type IV collagen in extracellular matrix, 

promoting fibrosis and glomerulosclerosis (54). 

Furthermore, leptin has significant pro-

inflammatory actions; it regulates cells involved in 

both innate and adaptive immune responses, 

including monocytes/macrophages and T-cells (55). 

Leptin enhances macrophage infiltration to the 

kidneys (56), and central T-cell production along with 

peripheral shift toward the pro-inflammatory T 

helper-1 (Th1) adaptive immune responses (57). 

Meanwhile, leptin enhances T-cell survival and 

promotes production of pro-inflammatory cytokines 
(58). In addition, leptin structurally and functionally 

resembles pro-inflammatory cytokines, such as 

interleukin-6 (IL-6) (55).  Finally, it binds to C-

reactive protein (CRP) and may modulate its activity 
(59). CRP is an inflammatory mediator involved in 

the initiation and progression of atherosclerosis and 

renal disease (60). 

  Adiponectin is an adipokines with 

protective properties; it has anti-inflammatory, anti-

atherogenic and insulin sensitization effects (61).  

Adiponectin levels has been reported to be lower in 

overweight and obese individuals compared to 

normal weight  individuals, and levels are negatively 

correlated with increased visceral fat (62, 63). 

Adiponectin helps to maintain structural integrity of 

podocytes (64). Kim et al. showed that binding of 

adiponectin to its intrarenal receptor (AdipoR1), 

improves oxidative stress status and inhibits 

podocytes apoptosis by ameliorating the 

intracellular pathways associated with lipid 

deposition and endothelial dysfunction (64).  

Moreover, adiponectin is suggested to have 

significant anti-inflammatory effects by the 

suppression of tumor necrosis factor-α (TNF-α) 

production with the subsequent prevention of 

nuclear factor-κB (NF-κB) activation (65). 

Adiponectin also inhibits the expression of vascular 

cell adhesion molecule 1 (VCAM-1) and 

intercellular adhesion molecule 1 (ICAM-1) (66), 

hence decreasing monocyte adhesion to endothelial 

cells as well as macrophage-induced cytokine 

production (67). Moreover, adiponectin is inversely 

correlated with CRP expression in human adipose 

tissue (68).  

The role of micro-inflammation  
Obesity has been considered a state of 

chronic low-grade inflammation (69). Adiposity 

induces an inflammatory microenvironment in the 

kidneys.  Adipose tissue of obese individuals is 

highly infiltrated by macrophages (70), and it has 

been estimated that macrophages are roughly 

accounting for 40% of the total cells within adipose 

tissue of obese individuals (71). Adipose tissue 

macrophages contribute to key regulatory 

physiological functions such as tissue remodeling 
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(72), and insulin sensitivity (73). Macrophages secrete 

both anti‐ and pro‐inflammatory cytokines (74). Anti‐
inflammatory cytokines secreted by adipose tissue 

macrophages such as IL-4 and IL-10 conserve 

insulin sensitivity by neutralizing inflammatory 

responses (73). Macrophages also secrete pro-

inflammatory cytokines such as TNF-α, IL-1β, IL-6, 

IL-8, IL-12 CRP, monocyte chemoattractant 

protein-1 (MCP‐1), and plasminogen activator 

inhibitor-1 (PAI-1) in response to inflammatory 

stimuli. With progressive obesity and adipocytes 

hypertrophy, adipose tissue macrophages secrete 

chemoattractants, such as MCP‐1 that recruits more 

macrophages to renal adipose tissue. Pro-

inflammatory cytokines promote a 

microenvironment of chronic low-grade 

inflammation and insulin resistance in the kidneys 
(75).  

Macrophages and adipocytes communicate 

with each other via different mediators. For 

example, fatty acids released from adipocytes 

stimulate macrophages for the secretion of TNF-α 

which increases IL-6 secretion by adipocytes. Both 

TNF-α and IL-6 are pro-inflammatory cytokines that 

amplify inflammation in the kidneys as well as in the 

adipose tissues (76). 

Moreover, TNF-α plays an important role in the 

development of renal fibrosis (77). It was found that 

the expressions of TNF-α and its receptor is 

enhanced in renal biopsy samples collected from 

ORG patients, referring to a potential role of TNF-α 

in the pathogenesis of ORG (78). Systemically, IL-6 

is mainly produced by adipose tissue, while it is 

produced by macrophages in the kidney (79).  IL-6 is 

also suggested to be a risk factor of renal injury in 

obese individuals as glomeruli from ORG patients 

showed increased expression of IL-6 signal 

transducer (80). 
 

Conclusion  
Obesity contributes to hemodynamic and 

structural changes in the renal system. Pathogenesis 

of obesity-related glomerulopathy is multifactorial, 

and the mechanisms involved are mostly 

interconnected.  
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