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Abstract 
Alginate is one of the natural biopolymers that is widely used for drug formulations, combination of 

alginate with other polymers, such as gum acacia, pectin, and carrageenan can increase mechanical strength, 

therefore, can reduce leakage of the encapsulated active pharmaceutical ingredient from the polymer matrix. 

Interaction of alginate and these polymers can occur via intermolecular hydrogen bonds causing synergism, which 

is determined from the viscosity of polymer mixture. 

Alginate was combined with gum acacia/pectin/carrageenan in different blending ratios (100:0, 75:25, 

50:50, 25:75, and 0:100) with and without addition of CaCl2. The synergism effect is obtained from the design of 

experimental (DoE), and calculation the percentage value of viscosity deviation viscosity synergism index, then 

the strength of gel was analyzed. The interaction between two polymers was observed using FTIR spectroscopy.  

In distilled water, the synergistic effect was found in the combination of alginate-carrageenan at ratios 25:75 and 

50:50. Otherwise, in CaCl2 solution, synergistic effect appears in alginate-gum acacia (75:25), alginate-pectin 

(50:50 and 75:25), and alginate-carrageenan (50:50 and 75:25). The synergistic effect and strength of gel polymers 

increased, with the addition of CaCl2. 
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Introduction 
The combinations of alginate with some 

electronegative polymers such as pectin, gum 

acacia, carrageenan, etc. have been widely used in 

drug formulation. to encapsulate active ingredients 

to prevent degradation (1), improve thermal and 

chemical stability (2–5), reduce toxicity (6,7), increase 

the effectiveness of active substances (7,8), control 

the release of the active substance (9–12), improve 

mechanical properties of microbeads (13), and as a 

carrier for drug targeting (14). 

Alginate as biopolymer material does not 

have sufficient mechanical properties, and this 

makes it difficult to use in specific products. To 

overcome this, it can be resolved by combining 

alginate with other polymers. Alginate can dimerize 

to form bridges with other chains and produce 

hydrogel networks (15). Alginate and other poly-

electronegative polymers will interact via 

intermolecular hydrogen bonds (16,17). The 

combination with polymers, such as gum acacia, 

pectin, and carrageenan can increase their 

synergistic effect compared to the single polymer. 

The synergistic ability of polymers can be 

characterized through changes in viscosity that 

occur when polymers are combined (18). The 

determination of synergy effect is very useful for the 

fabrication of the matrix used for drug 

encapsulation. 

An approach using experimental design has 

been studied by Jadhav, et al (2018) to identify 

polymeric synergy. The benefit of using the design 

of experiment tool is an experiment can be more 

effective with a smaller sample (19). Marimuthu et al 

(2017) have calculated the synergism index to 

determine the synergy effect on the combination of 

carrageenan with several natural polymers (18). On 

the other hand, Nkenmogne et al (2020) have 

calculated using percentage deviation calculation 

the synergy effect of a combination of alginate and 

hydrocolloids from tropical vegetal species (20). The 

synergism between two polymers can be determined 

from experimental design or mathematical 

equations.  

The objective of this study was the 

characterization of alginate combination with 

pectin, gum acacia, or carrageenan with and without 

the addition of Calcium Chloride (CaCl2) solution. 

The interaction of two polymers combination would 

be observed using calculation of synergy effect 

ability. Synergism will be determined using 

viscosity data obtained from an experimental design, 

and mathematical equation including viscous 

synergism index and percentage deviation of 

viscosity. FTIR spectroscopy was used to show the 

bands of interaction in the polymer’s mixture. 
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Materials and Methods 
Materials 

Sodium alginate ALG was manufactured 

by Shandong Jiejing Group Corporation (China), 

gum acacia GA was manufactured by Spectrum 

Chemical MFG Corporation (California), pectin PC 

was manufactured by Danisco USA Inc (USA), 

kappa-carrageenan CR was manufactured by Top 

P&P Co (China), CaCl2 was manufactured by PT. 

Smart-Lab Indonesia and deionized water was 

supplied from CV. Alfa Kimia.  
 

Preparation of polymer mixture solution 

A polymer solution with a concentration of 

1% was prepared by weighing 1.0 g and dissolved 

slowly into 100 ml deionized water then stirred until 

homogenous. The solution of alginate (ALG) mixed 

with each gum acacia (GA), pectin (PC), or 

carrageenan (CR) that weighted with a total weight 

of 50 g (w/w). The ratio of ALG-GA, ALG-PC, and 

ALG-CR were 100:0, 75:25, 50:50, and 0: 100. The 

aqueous solution of combination ALG with other 

polymers was mixed under stirred 500 rpm for 30 

minutes together continuously until polymer 

mixture solution is completely mixed. Then, the 

polymers mixture solution was added to 50 mL 0.2% 

w/v CaCl2 solution. 
 

Design of experimental (DoE) 

The Simple Lattice Design (SLD) software 

Design Expert Version 10 was applied to determine 

the ratio of mixture between two polymers then be 

used to identify the combination synergistic 

polymers. The SLD is one of the types of DoE that 

have been used to address formulation exercises and 

follow two major constraints, equality, and non-

negatively. The model F ratio was found statistically 

significant (a<0.0001) indicating that there is only a 

0.01% chance that an F-value this large could occur 

due to noise. The p-value for lack of fit was not 

significant because a>0.05 indicates the model is 

good to fit.  

The SLD can describe mixtures with 

proportions ranging from zero to 100% for the 

components under study (21). In this study, the ratios 

were obtained from SLD software. The independent 

factors are the ratio of alginate (X1) and pectin/gum 

acacia/carrageenan (X2), which are 100:0, 75:25, 

50:50, 25:75, and 0:100. The dependent factor is 

viscosity as a response (Y) from polymers mixture 

(total concentration 1%). The total runs for each 

combination were 8 runs conducted with 2 

replicates. The equation for SLD is described as 

follows: 

𝑌 =  𝑏_1 𝑋_1 +  𝑏_2 𝑋_2 +  𝑏_12 𝑋_1 𝑋_2 +
 𝑏_12 𝑋_1 𝑋_2 (𝑋_1–  𝑋_2 )   +
 𝑏_12 𝑋_1 𝑋_2 (𝑋_1–  𝑋_2 )^2             (Equation 1) 
 

 

 

 

Characterization of polymers mixture 

Determination of viscosity and rheological 

analysis 

Viscosity was measured using a viscometer 

Brookfield at 50°C±5°C following stirring with 

spindle no. 02 or 03, at 100 rpm for 15 s for each 

mixture solution. The data was determined in 

triplicate in mPa.s. 

Equation 2 described the synergistic effect 

of combination polymers, but it doesn’t predict the 

viscosity of the mixture solution. Equation 3 was 

first used by Miller and Mann (1994) to calculate the 

power requirements for agitation of mixtures of 

immiscible liquids and predict a geometric mean 

viscosity which provided a better approximation to 

the experimental value for the viscosity of polymer 

mixture (22). 

𝜂𝑚𝑖𝑥 = 𝑋𝐴𝜂𝐴 + 𝑋𝐵𝜂𝐵         (Equation 2) 

𝜂𝑚𝑖𝑥 = 𝜂𝐴
𝑋𝐴 × 𝜂𝐵

𝑋𝐵             (Equation 3) 

The determination of percentage deviation 

was calculated by Equation 4. The negative value 

indicates an antagonistic effect, while the positive 

value indicates a synergy effect that shows the 

interaction of coupled network form (20). The 

theoretical viscosity in this equation is used from 

equation 1. 

%𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
𝜂𝑒𝑥𝑝

𝜂𝑡ℎ𝑒𝑜𝑟𝑖
())         (Equation 4) 

The viscous synergism index was calculated by 

Equation 5. Index value between 0-0.5 means there 

is antagonistic interaction. Index value = 0.5 means 

no interaction occurs. Index value between 0.5-1.00 

or > 1 indicates interaction in mixture solution is 

higher than the sum of two polymers, hence 

referring to the synergistic effect (18).  

𝑆𝑦𝑛𝑒𝑟𝑔𝑖𝑠𝑚 𝑖𝑛𝑑𝑒𝑥 =
𝜂𝑚𝑖𝑥

𝜂𝐴+𝜂𝐵
                (Equation 5) 

Gel strength 

Gel strength was measured using texture 

analyzer AMETEK with type TA1 in duplicates. 

Fourier transforms infrared (FT-IR) spectroscopy 

analysis 

Samples were dried by freeze dryer to 

powder and analyzed as KBr pellets using FT-IR 

Spectroscopy Thermo Scientific Nicolet Is10 

(USA). Spectral scanning was measured between 

the wavelength region 4000 to 400 cm-1. 
 

Result and Discussion 
Design of experimental 

 The Simple Lattice Design was selected to 

calculate of combination polymer in with and 

without CaCl2 solution with viscosity as a response 

change (Table 1). 
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Table 1. Design of experimental for combination polymers 
 

Run Ratio 

Viscosity (mPa.s) 

Without CaCl2 With CaCl2 

ALG:GA ALG:PK ALG:CR ALG:GA ALG:PK ALG:CR 

1 0:100 12.4 8.8 32.8 10.4 9.2 17.2 

2 0:100 11.6 8.4 36 11.2 11.6 17.2 

3 25:75 26 22 188.8 34 36 39 

4 40:60 42 - - 48.4 164 - 

5 50:50 43.2 38.8 145.2 78 210 263 

6 75:25 52.4 70.4 75.2 216 229 332 

7 100:0 152.8 146.4 146.4 202 209 209 

8 100:0 146.4 150.8 150.8 209 234 202 

9 100:0 150.8 152.8 146.4 234 202 234 

 
The result of the equation of experimental 

was represented in Table 2. We need additional data 

for the combination of alginate-gum acacia and 

alginate-pectin due to the model did not show a lack 

of fit value. Therefore, to obtain a lack of fit value, 

we fabricated an addition ratio of polymers 

combination which is aimed at a 40:60 ratio. The 

model could determine the synergistic of polymer 

combination. A positive sign of AB refers to a 

synergistic effect, while a negative sign of AB refers 

to an antagonistic effect. The polymer combination 

that showed synergies effect only alginate-

carrageenan in distilled water. Whereas, in CaCl2 

solution, the synergy effect has been found not only 

in alginate-carrageenan, but also in alginate-pectin. 

The determination of synergism with the design of 

experimental did not know specific at ratio 

specifically, to found out the ratio we need equation 

methods such as viscosity deviation and viscosity 

index. 

 
Table 2. Model design of experimental 

Mixture Lack of Fit Equation R-Squared Model 

Alginate : Gum Acacia Without 

CaCl2 

0.4762 Yviscosity = +150.012 x A + 

11.973 x B – 145.915 x AB – 

231.753 x AB (A-B) – 304.351 

x AB (A-B)2 

0.9982 Quartic 

With 

CaCl2 

0.9189 Yviscosity = +215.008 x A + 

10.781 x B – 135.93 x AB + 

422.971 x AB (A-B) + 804.437 

x AB (A-B)2 

0.9848 Quartic 

Alginate : Pectin Without 

CaCl2 

0.3989 Yviscosity = +149.894 x A + 

8.442 x B – 169.073 x AB – 

119.074 x AB (A-B) 

0.9983 Cubic 

With 

CaCl2 

0.5486 Yviscosity = +215.052 x A + 

10.284 x B + 411.622 x AB + 

464.414 x AB (A-B) -1208.3 x 

AB(A-B)2 

0.9825 Quartic 

Alginate : 

Carrageenan 

Without 

CaCl2 

0.9087 Yviscosity = 147.879 x A + 

34.4184 x B + 217.089 x AB – 

908.428 

0.9987 Cubic 

With 

CaCl2 

0.0644 Yviscosity = +213.42 x A + 

14.830 x B + 481.763 x AB – 

1033.09 x AB (A-B) 

0.9648 Cubic 

 

Viscosity synergism index and percentage 

deviation of viscosity 

Combination of alginate with other anionic 

polymers could form an intermolecular association 

via hydrogen bonding. The synergies effect were 

shown by viscosity characterization as a result of 

multicomponent gel (23). Alginate gave a major 

contribution to increase the viscosity of polymer  

 

 

combination. The synergies effect in both polymer 

combinations could be known from percentage 

deviation (Equation 4) and viscous synergism index 

(Equation 5). If alginate was combined with another 

polymer, a semi-interpenetrating polymer network 

(s-IPN) could be formed which increased the 

mechanical strength of the mixture gel (24)

. 
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Figure 1. The viscosity of mixture solution polymer with presence and absence CaCl2. (a) alginate with gum 

acacia; (b) alginate with pectin; and (c) alginate with carrageenan. data shown are the average values and 

standard deviation (n=3). 

 

In distilled water, the highest viscosity of 

polymers combination would be the highest alginate 

composition ratio (Fig. 1a and 1b). However, 

viscosity in the combination of alginate-carrageenan 

(Fig. 1c) would increase if the composition of 

carrageenan increases. The dispersion of 

carrageenan could be able to form gel briefly. This 

gelling ability leads to increase in the viscosity of 

combination carrageenan with alginate. In CaCl2 

solution, the viscosity could increase at all polymers 

combination and their ratio specifically compared 

with using distilled water without CaCl2 (Fig. 1). 

The cation (Ca2+ from CaCl2) can cross-link with 

alginate so that an egg-box network is formed. This 

could increase the viscosity in the combined 

solution, proportional to an increasing composition 

ratio of alginate. 

Generally, viscosity from experimental and 

theoretical did not always have the same value, 

which concludes the mixture was not much fit 

(Table 3 and 4) due to specific interaction such as 

synergism.  
 

Table 3. Estimation of the apparent viscosity of alginate mixture without CaCl2 
 

Ratio Gum Acacia (mPa.s) Pectin (mPa.s) Carrageenan (mPa.s) 

Exp. Eq. 1ab Eq. 2a Exp. Eq. 1ab Eq. 2a Exp. Eq. 1ab Eq. 2a 

100:0 150.0 150 150 150 150 150 150 150 150 

75:25 52.4 115.6 80.4 70.1 114.7 73.5 76.8 121.4 104.8 

50:50 43.7 81.2 43.1 39.1 79.3 36.1 142.3 92.9 73.2 

25:75 26.0 46.8 23.1 22.4 44 17.7 190.8 64.3 51.1 

0:100 12.4 12.4 12.4 8.7 8.7 8.7 35.7 35.7 35.7 
ap > 0.05 indicate no significant difference in mixture ratio that compared to exp. group 
bp > 0.05 indicate no significant difference in mixture ratio that compared to equation 2 
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Table 4. Estimation of the apparent viscosity of alginate mixture with CaCl2 

Ratio Gum Acacia (mPa.s) Pectin (mPa.s) Carrageenan (mPa.s) 

Exp. Eq. 1ab Eq. 2a Exp. Eq. 1ab Eq. 2a Exp. Eq. 1ab Eq. 2a 

100:0 215 215 215 215 215 215 215 215 215 

75:25 265.3 163.8 100.5 212.3 163.7 99.8 341.67 165.55 114.3 

50:50 72.3 112.6 47 256.3 112.5 46.4 284 116.1 60.8 

25:75 29.7 61.4 22 33.3 61.25 21.5 40.67 66.65 32.3 

0:100 10.3 10.3 10.3 10 10 10 17.2 17.2 17.2 

ap > 0.05 indicate no significant difference in mixture ratio that compared to exp. group 
bp > 0.05 indicate no significant difference in mixture ratio that compared to equation 2 

 

 
Figure 2. Viscosity deviation of alginate in combination with gum acacia/pectin/carrageenan. (a) in 

distillate water and (b) in cacl2 solution. 
 

In distilled water, combination of alginate 

with carrageenan at 25:75 and 50:50 have a positive 

value (Fig. 2a). Meanwhile, combination alginate 

with gum acacia and pectin at all weights the ratio 

showed a negative value, which means no synergy 

effect occurs. Alginate and pectin were able to form 

a synergistic mixed gel at low pH even in the 

absence of CaCl2. However, in this study, no 

synergistic effect was found in the combination of 

alginate and pectin due to the degree of esterification 

(DE) of pectin being categorized as high DE. 

Synergism between alginate and pectin depended on 

a heterogeneous association between galacturonic 

acid region of alginate and degree of esterification 

of pectin. Both regions could form twofold 

crystalline arrays (13). The more the degree of 

esterification, the higher carboxylic groups that were 

methylated and the lower available carboxylic 

groups so that the binding pectin with the region of 

alginate was limited. The presence of CaCl2 could 

make an egg-box network on each pectin and 

alginate that could enhancement viscosity in mixed 

combination, so synergies effect occurs. 

In CaCl2 solution, the positive value of 

viscosity deviation was found in combination of 

alginate and gum acacia at ratio 75:25, alginate and 

pectin at ratio 50:50 and 75:25, also alginate and 

carrageenan at 50:50 and 75:25 (Fig. 2b). The 

synergies effect in CaCl2 solution was more than in 

distilled water due to the cation interaction effect 

from Ca2+. 

The synergistic effect result in CaCl2 

solution was a combination of alginate-gum acacia 

(75:25), alginate-pectin (75:25 and 50:50), and 

alginate-carrageenan (75:25 and 50:50). Otherwise, 

only a combination of alginate-carrageenan (50:50 

and 25:75) had good synergy distilled water. There 

was no different result from the viscosity index 

equation compared with the deviation index (Table 

5). Therefore, we could use one of the equations to 

determine the synergistic effect, either deviation 

index or viscosity index. 
 

Table 5. Viscous synergism Index of alginate mixture in with and without CaCl2 

Ratio Viscosity Index 

Gum Acacia Pectin Carrageenan 

Without 

CaCl2
a 

With CaCl2 Without 

CaCl2
a 

With CaCl2 Without 

CaCl2
a 

With CaCl2 

100:0 - - - - - - 

75:25 0.32 1.18 0.44 0.94 0.41 1.47 

50:50 0.27 0.32 0.25 1.14 0.77 1.22 

25:75 0.16 0.13 0.14 0.15 1.03 0.18 

0:100 - - - - - - 

ap > 0.05 indicate no significant difference in mixture ratio that compared to a solution with CaCl2 
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Gel strength 

The combination of the polysaccharide was 

an effective method to improve the physical 

properties and interactions of these 

biomacromolecules(25). The combination of alginate 

with other polyelectrolyte polymers could create 

strong complex bonds in gels forming with the 

addition of divalent ions, such as Ca2+ from CaCl2 

solution. The mechanical strength and chemical 

stability of alginate beads would result (26). The  

 

hydrophilic effect in these natural polymers leads to 

formation of a viscous gel structure due to their 

capability to hydrate in water. This is advantageous 

in encapsulating the drug and forming a viscous 

layer around the drug hindering the diffusion and 

causing a prolonged release of the drug, which is 

proportional with the viscosity and molecular 

weight of the polymer (11). The gel strength is shown 

in Fig. 3.  

 

 
Figure 3. The gel strength of mixture solution of alginate with gum acacia/pectin/carrageenan. a: alginate 

with gum acacia; b: alginate with pectin; and c: alginate with carrageenan. data shown are the average 

values and standard deviation (n=2). 

 

The structure created by the interaction of 

Ca2+ with alginate is known as the egg-box (Fig. 4) 
(27,28). The Ca2+ ion interacts with a guluronic acid 

residue of alginate and carboxyl group groups of 

alginate and gum acacia (about 17% Glucuronic 

acid) which were negatively charged ions. The Ca2+ 

ion could not form an egg-box structure like alginate 

with  gum acacia (4), this could be represented by the 

viscosity value of gum acacia alone that did not 

change on  the addition of CaCl2.  

 

 
 

Figure 4. Egg-Box Alginate Cross-linking with CaCl2 

 
However, in polymer combination of gum 

acacia with alginate, the higher the alginate fraction, 

the greater the strength of gel (Fig. 5). This 

interaction occurred via the ionotropic gelation 

technique by cross-linking between hydroxy groups 

of both polymers (9). The addition of gum acacia into 

alginate in CaCl2 solution could reduce side-by-side 

aggregation that can lead to alginate swelling due to 

electrostatic repulsive force between carboxylate 

anions (4).  
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Figure 5. Interaction between alginate and gum acacia in CaCl2 solution 

 
Pectin could form an egg-box structure in 

the presence of Ca2+ ions as well as alginate. 

Therefore, increasing gel strength after addition of 

CaCl2 (Fig. 3b). Gel formation was preferable if 

pectin had a low degree of esterification (DE) 

instead of a high DE. The lower DE, the more 

carboxylic groups that were not methylated so they 

could bind more Ca2+. The pectin that was used in 

this study had a high DE, which was 70%. 

Therefore, the addition of Ca2+ did not significantly 

affect gel strength. The higher the alginate fraction 

in the mixture solution, the greater gel strength, 

because Ca2+ did not have a significant influence on 

pectin. The interaction between Ca2+ with carboxyl 

groups of alginate and pectin may cause cross-

linking that could reduce electrostatic repulsion 

between polymers. The character of the gel formed 

depends on the degree of esterification of pectin and 

guluronic acid residue of alginate. The synergistic 

interaction between pectin and alginate in mixed 

gels was not fully known (Fig. 6) (29). 

 

 
 

Figure 6. Interaction between alginate and pectin in CaCl2 solution 

 
Carrageenan could undergo ionic gelation 

with monovalent or divalent ions, such as K+ or Ca2+ 

ions. The interaction of carrageenan with Ca2+ ion 

underwent electrostatic attractions which then 

formed an intramolecular bridge between oxygen 

and -OSO3 groups of carrageenan. After that, the 

cross-linking network between carrageenan was 

formed. Cation could induce conformation in the 

polymer through the coil-helix transition, then the 

aggregation of helix form a gel (30). In this study, the 

gel strength in a solution of sole carrageenan with 

the presence of CaCl2 was lower than without CaCl2. 

This was probably because divalent ion did not have 

a major effect on kappa-carrageenan, but had a 

major influence with iota-carrageenan which has 

two sulfate groups (31). In the combination of 

alginate and carrageenan, the addition of CaCl2 

could increase the gel strength along with the 

increase in the alginate ratio. The interaction was 

formed between the carboxyl groups of alginate and 

the sulfate and carboxyl groups of carrageenan (Fig. 

7) (32).  
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Figure 7. Interaction between alginate and carrageenan in CaCl2 solution 

 
 

FT-IR analysis 

FT-IR spectra determine intermolecular 

interactions and specific vibrations of each 

functional group in the sample of alginate and other 

polymers. Before FTIR, the samples of the hydrogel 

mixture have been freeze-dried. This step could also 

initiate or reinforce the potential interactions 

between the two polymers (33).  

The FTIR spectra of alginate and gum 

acacia showed similar bands. Fig. 8a presents 

spectra of alginate and gum acacia. In mixture 

solution, the sharp peaks at 1420 cm-1 along with 

increasing alginate ratio. The absorption band of the 

OH moiety has shifted to lower wavenumbers. This 

change could occur due to there being the interaction 

of intermolecular hydrogen bonding between 

alginate and gum acacia(34). The specific peak at 

region 1035-1072 cm-1 showed a difference on all 

combinations of the ratio of alginate and gum acacia, 

depending on the ratio of each polymer, which could 

be useful to distinguish all ratios. In mixture solution 

alginate/gum acacia 25:75, the intensity absorption 

bands at 1635 cm-1 decreased with decreasing of 

alginate ratio. In mixture solution alginate/gum 

acacia 75:25, the absorption bands at 1420 cm-1 

showed low intensity due to the ratio of gum acacia 

decreased. The spectra of alginate showed the bands 

at 1622 cm-1 and 1417 cm-1 that correspond to 

asymmetric and symmetric C=O stretching 

vibrations of the carboxylate groups, respectively 
(9,34). This result described that all mixed ratios of 

alginate and gum acacia were successfully blended. 

FTIR spectra of sole alginate with the presence of 

CaCl2 (Fig. 8b) showed a sharper peak than absence 

due to carboxylate groups being affected. The sole 

gum acacia showed the sharper peak at 1073-1036 

cm-1 that represented C=O stretching vibrations that 

attributed to glycosidic linkages. That impact to all 

ratio combination showed more intense peak than 

without presence CaCl2. 

Spectra of alginate and pectin in distillate 

water were presented in Fig. 8c have specific 

absorption bands between 1000-1200 cm-1 range 

correspond to ring vibrations overlapping with the 

stretching vibrations of C-OH side groups and C-O-

C glycosidic bond vibration (35). The region between 

1600-1800 cm-1 was specific interest that did not 

show in alginate to compare pectin sample with 

other polymers (13). The combination of alginate and 

pectin in CaCl2 solution (Fig. 8d) showed the typical 

spectra with some differences compared with a 

single polymer. Although the differences were not 

significant. In mixture solution, alginate/pectin 

75:25 showed two bands between 1077 and 1144 

cm-1 similar with bands in single alginate (13). The 

absorption bands at 1600 cm-1 increased with 

increasing alginate ratio due to alginate having more 

carboxylate groups than pectin. In mixture, solution 

alginate/pectin 25:75 showed the intensive 

absorption at 1144 cm-1 that correspond to 

glycosidic pectin vibration. The spectra at 1738 cm-

1 increased with increasing pectin ratio due to the 

presence of methyl-esterified carboxyl group (35). 

This result described that all mixed ratios of alginate 

and pectin were successfully blended. 

The FTIR spectra of alginate and 

carrageenan showed similar bands. Fig. 8e presents 

spectra of alginate and carrageenan. The specific 

peak of carrageenan showed at 1381 cm-1 and 1234 

cm-1 assigned to the stretching vibration band of 

sulfate presence (S-O) (24,36). FTIR spectra of sole 

alginate with the presence of CaCl2 (Fig. 8f) showed 

a sharper peak than absence due to carboxylate 

groups being affected. The sole carrageenan showed 

a sharper peak at 1149 cm-1 that correspond to 

glycosidic linkage. That impact to all ratio 

combination showed more intense peak than without 

presence CaCl2. In mixture solution 

alginate/carrageenan 75:25, there were two spectra 

similar with bands in single alginate. The intensity 

absorption bands of single carrageenan at 1421 cm-1 

decreased with increasing alginate ratio due to 

alginate have more carboxylate groups than 

carrageenan. In mixture solution 

alginate/carrageenan 25:75, the absorption bands at 

1637 cm-1 showed low intensity, otherwise, the 
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intensity would be high following the increased ratio 

of alginate. This result described that all mixed 

ratios of alginate and carrageenan were successfully 

blended.

 

 

 
Figure 8. FT-IR spectra in CaCl2 solution (a) alginate with gum acacia (c) alginate with pectin (e) alginate 

with carrageenan, in absence CaCl2 (b) alginate with gum acacia (d) alginate with pectin (f) alginate with 

carrageenan. 
 

Conclusion 
The result of synergic effect in 

combination polymers used the design of 

experimental in distilled water have been found in 

alginate-carrageenan. Whereas, in CaCl2 solution, 

the synergy effect has been found not only in 

alginate-carrageenan, but also in alginate-pectin. 

The determination of synergism using the design of 

experimental cannot show the specific ratio of 

polymer combination that have synergic effect, so 

that the synergism should be determined by 

mathematical equation including viscous synergism 

index and percentage deviation of viscosity too. 

Determination of synergy effect from 

percentage value of viscosity deviation and viscous 

synergism index equation have a similar result. In  

 

distilled water, the synergies effect was found in the 

combination of alginate-carrageenan at ratios 25:75 

and 50:50. On the other hand, the addition of  CaCl2   

to  alginate-gum acacia (75:25), alginate-pectin 

(50:50 and 75:25), and alginate-carrageenan (50:50 

and 75:25) showed more synergistic effect.  The 

synergistic effect is confirmed with data of strength 

of gel polymers that increased with the addition of 

CaCl2. 
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