Effects of Abuse of Anabolic Androgenic Steroids on Iraqi Athletes Al-Muhannad M. Taher^{*}, May S. Al-Sabbagh^{1,**} and Dawser K. Al-Khashali^{***}

*Pharmacist at Yarmook Hospital, Baghdad, Iraq

** Department of Clinical Pharmacy, College of Pharmacy, University of Baghdad, Baghdad, Iraq

** Department of Pharmacology and Toxicology ,College of Pharmacy ,University of Baghdad, Baghdad ,Iraq

Abstract

Anabolic androgenic steroids (AAS) are man-made derivatives of the male sex hormone testosterone, originally designed for therapeutic uses to provide higher anabolic potency with lower androgenic effects. Increasing numbers of young athletes are using these agents illicitly to enhance physical fitness, appearance, and performance despite their numerous side effects and worldwide banning. Today, their use remains one of the main health problems in sports because of their availability and low price. The present study focuses on investigating the adverse effects of anabolic androgenic steroid abuse on sex hormones, liver and renal function tests, fasting glucose levels and lipid metabolism in Iraqi male recreational bodybuilders. We have recruited fifteen male bodybuilders (age 19-32 years) and an equal number of healthy non-obese, non-AAS-using sedentary controls. Serum hormones (luteinizing hormone (LH), follicle stimulating hormone (FSH), total testosterone, and prolactin), liver function indices (serum alanine aminotransferase (ALT), aspartate aminotransferase(AST), alkaline phosphatase(ALP), total and direct bilirubin), renal function parameters (serum creatinine and urea), lipid profile and serum glucose levels were measured. Abuse of AAS was associated with significant decreases (p < 0.005) in serum levels of LH (66.9%), FSH (49.8 %) and testosterone (63.7%) together with significant increases (p < 0.05) in prolactin concentrations (49.8%) in AAS-using bodybuilders compared to sedentary controls. Anabolic androgenic steroidsusing athletes had significantly higher (p < 0.05) circulating levels of total bilirubin (116.3%), direct bilirubin (127.6%), aspartate (1752.9%) and alanine (263.1%) transaminases than those of sedentary control subjects. Serum alkaline phosphatase levels were not significantly different (p > 0.05) between the two groups. Concerning renal function, AAS-using athletes had significantly higher serum concentrations of creatinine (28.6%) and urea (21.3%) than sedentary controls. Meanwhile, AAS abuse was accompanied by atherogenic lipid profile. Anabolic androgenic steroids -using athletes had significantly higher (p < 0.05) serum levels of triglycerides (TG) (45.6%), low density lipoproteincholesterol (LDL-C) (26.0%) and very low density lipoprotein-cholesterol (VLDL-C) (45.6%) together with significantly lower serum concentrations of high density lipoprotein-cholesterol (HDL-C) (31.3%) than sedentary controls. Serum total cholesterol (TC) and fasting glucose concentrations were not significantly different (p > 0.05) between the two groups. The results presented in the study confirm that abuse of AAS induces unfavorable body functions and undesirable side effects. Therefore, efforts should be sought against use of these compounds outside the therapeutic frame. Key words: anabolic steroids, athletes, bodybuilding, exercise.

الخلاصة

الستير ويدات البنائية هي مشتقات الهرمون الذكري المعروف بـ) Testosterone (صُنعت خصيصاً للتغلب على عيوب و مساوئ الـ) Testosterone (كمستحضر دوائي .تذكر الدر اسات أنَّ أعداد الرياضيين الذين يقبلون على تعاطي مثل هذه المركبات بدون تصريح طبي في تزايد ملحوظ بمرور السنين على الرغم من التحذيرات المتكررة حول أعر اضبها الجانبية و على الرغم من وضع المنظمات الأولمبية و الجهات الحكومية عقوبات صارمة على من يتعاطى هذه المواد أو يتاجر بها .يعتبر الاستخدام الخاطئ لهذه المركبات من قبل الرياضيين من أهم مشاكل الرياضة في العصر الحديث .أجريت هذه المواد أو يتاجر بها .يعتبر الاستخدام الستيرويدات البنائية على مستوى الهرمونات في مصل الدم و وظائف الكبد و الكلى و مستوى توزيع الشحوم و مستوى السكر في مصل الدم لمجموعة من ممارسي رياضة كمال الأجسام .اشتملت هذه الدراسة على) 15 (رياضيا يتعاطون الستيرويدات البنائية و مصل الدم لمجموعة من ممارسي رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 15 (متطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية على مستوى الستيرويدات البنائية و مصل الدم لمجموعة من ممارسي رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 21 (متطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 15 (متطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 31 (متطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 31 (متطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 31 (منطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 31 (منطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 31 (منطوعاً لا يمارسون رياضة كمال الأجسام و لا يتعاطون الستيرويدات البنائية.) 31 ممان الذم الدم الدم) 31 مماليون رياضيرويدات البنائية.) 31 ممان الذم) 31 ممارسون رياضة كمال الأجسام و لا يتعاطون الستيروين الماليون الكبون المتيرون في معلون الماليوم ي ي ممارس الذم) 31 ممان الذم) 31 ممان الذم) 31 مارسون ريان في مركيز السكر في الدم) 31 مارسة الماليون الماليون الماليون البنات البنانية على تركيز الهرمون الغرم الماليون ماليون الماليون البناتة على تركيز الهرمونات في مصل الذم) 31 مارسون الم

1 Corresponding author : E-mail : may_sabbagh @ yahoo.com Received : 17/6/2008 Accepted : 16/9/2008 حيث لوحظ إنخفاض معنوي في تراكيز الـ)prolactin (و إرتفع مستوى)LH, FSH, and total testosteron (بصورة معنوية لدى متعاطي الستيرويدات البنائية، ترافق ذلك مع زيادة معنوية واضحة في مستويات الـ) LH, FSH معنوية واضحة في مستويات الـ) Total and direct bilirubin, SAST (مع عدم وجود أي فرق معنوي في مستوى الـ) alkaline phosphatase (مع عدم وجود أي فرق معنوي في مستوى الـ) alkaline phosphatase (مع عدم وجود أي فرق معنوي في مستوى الـ) alkaline phosphatase (بين المجموعتين . أظهرت الدراسة أيضاً إرتفاع مستوى الـ) ومع عدم وجود أي فرق معنوي في مستوى الـ) alkaline phosphatase (مع عدم وجود أي فرق معنوي في مستوى الـ) creating and urea (بين المجموعتين . أظهرت الدراسة أيضاً إرتفاع مستوى الـ) alkaline phosphatase (و يمصل الدم لدى متعاطي الستيرويدات البنائية بالإضافة إلى إرتفاع معنوي في مستوى الـ) رتفاع معنوي في مستوى الـ) رتفاع معنوي في مستوى الـ) وتفاع معنوي في مستوى الـ) productin و مصل الدم لدى متعاطي الستيرويدات البنائية بالإضافة إلى إرتفاع معنوي في مستوى الـ) رتفاع معنوي في مستوى الـ) معنوي في مستوى) معنوي أو مصل الدم لدى متعاطي الستيرويدات البنائية بالإضافة إلى إرتفاع معنوي في مستوى) الـ) رويفات معنوي في مستوى) الـ) الله معنوي في مستوى) معال (و السكر في مصل الدم بين المجموعتين . في ضوء النتائج التي أفرز تها هذه الدراسة، يمكننا استنتاج أن استخدام مستوى) TC (و السكر في مصل الدم بين المجموعتين . في ضوء النتائج التي أفرز تها هذه الدراسة، يمكننا استنتاج أن استخدام مستوى) TC (و السكر في مصل الدم بين المجموعتين . في ضوء النتائج التي أفرز تها هذه الدراسة، يمكننا استنتاج أن استخدام مستوى) TC (و السكر في مصل الدم بين المجموعتين . في ضوء النتائج التي أفرز تها هذه الدراسة، يمكننا استنتاج أن استخدام مستوى الـ) الـ) الـ) معاري الـ) الـ) الـ) المحمول مضاعفات تؤثر سلباً على وظائف جسم الإنسان . واجبنا يكمن في بذل الستيرويدات البنائية خارج إطار العلاجي .

Introduction

Self-administration of large doses of anabolic androgenic steroids (AAS) by athletes to obtain a well-shaped body and to increase muscular strength has been increasingly noticeable since the 1950s.^{1,2} Anabolic androgenic steroids are widely used by professional and recreational athletes as well as nonathletes.³ Abuse of AAS is not limited to male adults but also reported in female adults as well as adolescents of both sexes.¹ Every tissue in the body, including the brain, has androgen receptors; therefore, AAS exert systemic as well as psychological effects.⁴ Anabolic androgenic steroids have been linked with a wide range of unwanted adverse effects. These effects may range from physically unattractive, such as acne and gynecomastia in males, to serious and life threatening, such as cardiovascular diseases and hepatic carcinoma. Most effects are reversible upon withdrawal.^{2,5} Because of their widespread use, many side effects may turn out to be significant risk factors when considering public health. Increased risk of violent death was reported among AAS abusers from impulsive, aggressive behavior, or depressive symptoms.⁶ Anabolic androgenic steroids have been taken in cycles. Traditionally, AAS users combine two or more different drugs, mixing oral and injectable AAS. They begin a cycle with a low dose of AAS and slowly increase the dose and then the dose is tapered to zero.³ Doses taken by abusers can be 10-100 times higher than those used for medical purposes. The aim of the present study was to evaluate the changes in serum sex hormones, liver and renal function indices, glucose level and lipid metabolism in Iraqi male anabolic androgenic steroid abusers.

Material, Subjects and Methods *Participants*

Fifteen non-obese male bodybuilders aged 19-32 years (mean 23.27 ± 3.73) were recruited at local gyms in Baghdad city. Bodybuilders were interviewed concerning their health (current diseases and family diseases), consumption of high protein diet, regular exercise, lifetime steroid abuse, pattern

of use, and whether other supplements and drugs being used. Exclusion criteria included smoking, alcohol consumption, presence of chronic medical conditions (diabetes mellitus, liver or kidney disorders) and the use of growth hormone. Anabolic steroid abusers were selected if they were currently using AAS. Table (1) summarizes AAS used with their doses and duration of use prior to sample withdrawal. . All of the participants took androgens in cycles and none was taking AAS in a continuous pattern. Cycles were 4-8 weeks in duration separated by suspension periods of 4-12 weeks. A control group of healthy sedentary males (n=15) with a mean age of 22.1 ± 3.65 years were recruited from the community and historically had not ever used anabolic steroids. Unfortunately, absence of bodybuilding controls was evident because, as was found, persons who continue to exercise regularly use AAS routinely. The two groups of volunteers were comparable with respect to their age and height. However, the study group taking AAS had significantly greater mean weight and BMI.

Sample collection

Subjects' weight and height were measured using a balance beam and a vertical ruler. Participants were asked to fast for 12 hours and avoid heavy physical exercise before attending for sample collection. One blood sample was collected from each volunteers by venipuncture between 08:00-10:00 AM. A total of 15 ml blood was obtained and placed in EDTA-free tubes to be centrifuged for 5-10 minutes at 3000 rpm. Serum was then divided into several 1.5 mL Eppendorf tubes and stored at (-20°C) until time for the assay.

Laboratory measurements

Serum concentrations of LH, FSH, prolactin and total testosterone were determined by immunofluorometric assays on a mini VIDAS analyzer ^{7,8}. Liver and renal function indices were measured by colorimetric methods using the commercially available kits^{9,10,11,12,13,14,15}. Serum total cholesterol, triglyceride, highdensity lipoprotein cholesterol and fasting glucose concentrations were determined by routine autoanalyzer methods^{16,17,18,19}. Serum low- and very low-density lipoprotein

cholesterol concentrations were determined through the Friedwald formula²⁰.

Subject no,	AAS used	Route of administration	Dose (mg/kg)	Duration of prior sampling(wk)	Total dose received (mg)
1	Methandrostenolone	0	175	6	1350
	Nandrolone decanoate	Р	50		
2	Methandrostenolone	0	140	4	660
	Nandrolone decanoate	Р	25		
3	Methandrostenolone	0	140	4	760
	Nandrolone decanoate	Р	50		
4	Methandrostenolone	0	245	4	980
5	Methandrostenolone	0	210	4	840
6	Testodterone proponate	Р	50	3	450
	Nandrolone decanoate	Р	100		
7	Mthenolone	0	20	3	660
	Oxymetholone	0	150		
	Nandrolone decanoate	Р	50		
8	Methandrostenolone	0	175	6	1350
	Nandrolone decanoate	Р	50		
9	Methandrostenolone	0	140	4	760
	Nandrolone decanoate	Р	50		
10	Methandrostenolone	0	175	6	1650
	Nandrolone decanoate	Р	100		
11	Methandrostenolone	0	245	4	2780
	Sustanon	Р	250		
	Nandrolone decanoate	Р	200		
12	Methandrostenolone	0	175	4	1800
	Nandrolone decanoate	Р	25		
	Sustanon	Р	250		
13	Methandrostenolone	0	175	4	1100
	Nandrolone decanoate	Р	100		
14	Methandrostenolone	0	245	6	2670
	Nandrolone decanoate	Р	200		
15	Methandrostenolone	0	245	6	2670
	Nandrolone decanoate	р	200		

Table 1 : Dose and duration	n of AAS use for	[•] fifteen body builders
-----------------------------	------------------	------------------------------------

Statistical analysis

Data were expressed as mean \pm SD (standard deviation). Unpaired t-test was employed to examine the difference in means of the AAS-using group and sedentary controls. Pearson correlation (r) was used to analyze the relationships between total dose of AAS used prior to sample withdrawal and the hormonal and biochemical changes. A level of p value < 0.05 was considered statistically significant difference.

Results

Serum hormone levels

Serum LH, FSH, and total testosterone levels in AAS-using bodybuilders were significantly lower (p < 0.005) than those in the sedentary controls (66.9%, 49.8%, and 63.7% respectively). However, AAS-using bodybuilders had significantly higher (p < 0.05) prolactin concentrations (49.8%) than sedentary controls (table 2). Table 2: Effects of anabolic androgenic steroids on serum hormones in AAS-using bodybuilders compared to sedentary controls.

Variable	Sedentary Controls N=15 (mean ±SD)	AAS-using BB N=15 (mean ± SD)
LH (mIU/mL)	3.11 ± 0.94	1.03 ± 1.09**
FSH (mIU/mL)	2.93 ± 1.30	1.47 ± 0.87**
Testosterone (ng/mL)	7.47 ± 1.95	2.71 ± 1.75**
PRL (ng/mL)	14.44 ± 6.19	21.63 ± 8.88*

Values expressed as mean \pm SD

The P- values refer to the differences from the control group.

* : P < 0.05 significant difference between the two groups.

** : P < 0.005 highly significant difference between the two groups.

N = no. of subjects.

Table 3: Effects of anabolic androgenic steroids on liver function tests in AAS-using bodybuilders compared to sedentary controls.

.Variabl e	Sedentary Controls N=15	AAS-using BB N=15 (mean ± SD)
	(mean ± SD)	
Total bilirubin (mg/dL)	0.49 ± 0.63	$1.06 \pm 0.74*$
Direct bilirubin (mg/dL)	0.29 ± 0.41	$0.66 \pm 0.47*$
ALP (U/L)	80.20 ± 20.26	$93.20 \pm 37.19^{\text{ns}}$
AST (U/L)	1.21 ± 4.69	22.42 ± 27.02**
ALT (U/L)	4.69 ± 6.52	$17.03 \pm 17.02*$

Values expressed as mean \pm SD

The P- values refer to the differences from the control group.

* : P < 0.05 significant difference between the two groups.

** : P <0.005 highly significant difference between the two groups.

^{ns}: non significant (P \geq 0.05) significant difference between the two groups N = no. of subjects.

Liver function parameters

Anabolic androgenic steroids-using bodybuilders had significantly higher (p < 0.05) circulating levels of total and direct bilirubin (116.3% and 127.6% respectively) than sedentary controls. Anabolic androgenic steroids -using bodybuilders had significantly higher serum AST (1752.9%, p < 0.005) and ALT (263.1%, p < 0.05) activities than sedentary controls (table 3). Serum alkaline phosphatase levels were not significantly different (p > 0.05) between the two studied groups.

Renal function tests

(Table 4) demonstrates that AAS-using bodybuilders had significantly higher circulating levels of creatinine (28.6%) and urea (21.3%) (p< 0.005 and p< 0.05, respectively) than sedentary control group.

Table 4: Effects of anabolic androgenic
steroids on renal function tests in AAS-
using bodybuilders compared to sedentary
controls.

Variable	Sedentary Controls N=15 (mean ± SD)	AAS-using BB N=15 (mean ± SD)
Cr (mg/dL)	0.84 ± 0.19	1.08 ± 0.21**
Urea (mg/dL)	38.07 ± 8.58	46.18 ± 14.37*

Values expressed as mean \pm SD

The P- values refer to the differences from the control group.

* : P < 0.05 significant difference between the two groups.

** : P < 0.005 highly significant difference between the two groups.

N = no. of subjects.

Lipid profile and fasting serum glucose

Circulating levels of HDL-C were significantly lower (p< 0.005) (31.3%) in AAS-abusing bodybuilders than sedentary controls. Table (5) indicates that AAS-using bodybuilders had significantly higher (p< 0.05) serum levels of triglycerides (45.6%), LDL-C (26.0%) and VLDL-C (45.6%) than sedentary controls. Serum total cholesterol and glucose concentrations were not significantly different (p> 0.05) between AAS-using bodybuilders and sedentary control subjects.

Table 5: Effects of anabolic androgenic steroids on lipid profile and serum glucose in AAS-using bodybuilders compared to sedentary controls

Variable	Sedentary Controls N=15 (mean ± SD)	AAS-using BB N=15 (mean ± SD)
Cholesterol (mg/dL)	153.80 ± 21.62	$171.20 \pm 37.19^{\mathrm{ns}}$
TG (mg/dL)	74.93 ± 42.84	109.13 ± 57.50*
HDL-C (mg/dL)	44.60 ± 7.15	30.67 ± 7.64**
LDL-C (mg/dL)	94.21 ± 21.13	118.71 ± 34.76*
VLDL-C (mg/dL)	14.99 ± 8.57	21.83 ± 11.50*
FSG (mg/dL)	83.20 ± 17.63	89.93 ± 9.16^{ns}

Values expressed as mean \pm SD

The P- values refer to the differences from the control group.

*: P < 0.05 significant difference between the two groups.

**: P <0.005 highly significant difference between the two groups.

^{ns} non significant (P \geq 0.05) significant difference between the two groups N = no. of subjects.

Adverse effects

Participants were asked questions about unusual adverse effects that would be felt during an AAS cycle and the most common reported side effects were aggression, changes in libido, acne formation, headaches, and premature hair loss as summarized in table 6.

Table 6: Adverse effects reported by AASusing bodybuilders.

Adverse effect	No. of Subjects N=15	%
Unusual aggression	8	53
Changes in libido	6	40
Acne	3	20
Headaches	4	27
Hair loss	2	13

Discussion

Subjects of this study use independently anabolic androgenic steroids mainly to enhance external physique. Besides being an unethical practice, abuse of AAS has been associated with several health risks and various

adverse effects which affect almost all organs and systems of the human body. Anabolic androgenic steroids-using bodybuilders had significantly lower (p < 0.005) serum levels of LH, FSH and total testosterone than sedentary controls (table 2). The results were consistent with those reported by Holma et al²¹ who observed reduced serum levels of LH, FSH and testosterone in athletics during a course of oral intake of methandrostenolone (15 mg/day). Exogenously administered anabolic androgenic steroids exert a negative feedback on the secretion of gonadotrophins, mostly attributed to a direct effect on the hypothalamus to decrease secretion of GnRH. This in turn causes a corresponding decrease in secretion of both LH and FSH and eventually biosynthesis and release of testosterone from the testes.²² In addition, anabolic androgenic steroids may produce local suppressive effects on the testes and on adrenal androgen production.²³ Serum prolactin levels in AASusing bodybuilders were significantly higher than those in sedentary controls (p < 0.05) (table 2). Data reported by Stoffel-Wagner et al^{24} and Leibenluft et al^{25} were consistent with the interpretation that testosterone and/or its metabolites facilitate the secretion of prolactin. Estrogen is known to stimulate prolactin release from the anterior pituitary.²⁶ Nonaromatizable AAS (stanozolol and methandrostenolone) were reported to activate estrogen receptors through interaction of either the parent compound or its metabolites indicating a possible mechanism for increased prolactin secretion.²⁷ The available data in the corresponding literature on the influence of exogenously administered androgens on prolactin serum level were found controversial. Serum total and direct bilirubin levels in AASusing bodybuilders were significantly higher (p< 0.05) than those in sedentary controls (table 3). Androgens can selectively interfere with bile excretion by the liver. Canalicular bile plugs were observed after treatment with methyltestosterone, oxymetholone, mestranol, and norethandrolone.²⁸ Cases of cholestatic jaundice have been recorded in patients therapeutically using or athletes abusing AAS (especially 17 alkylated agents).^{29,30} Serum AST and ALT levels in AAS-using bodybuilders were significantly higher (p< 0.005 and p< 0.05, respectively) than those in sedentary controls (table 3). Canalicular cholestasis characterized is by mild injury hepatocellular and release of transaminases leading to mild elevations in serum levels of these enzymes.²⁹ However, since sustained weightlifting alone can result in mild elevations in serum transaminase

activities^{31,32}, the increase in serum transaminases may be attributed to mild hepatocellular damage, muscle injury, or both. Urhausen et al³³reported that serum transaminase levels were significantly higher (p< 0.001) in anabolic androgenic steroidabusing athletes than bodybuilders who stopped using anabolic steroids for at least a year. A non-significant difference in serum ALP levels was found between the two studied groups (p > 0.05) (table 3). These results are consistent with those reported by O'Sullivan et al³⁴ who observed no significant difference in phosphatase activities between alkaline anabolic steroid users and potential or past users. Anabolic androgenic steroids can induce without elevating cholestasis alkaline phosphatase levels. ALP activity is usually less than threefold elevated and often is normal.³⁵ Anabolic androgenic steroids -using athletes had significantly higher serum creatinine (p< (0.005) and urea (p< (0.05)) levels than sedentary controls (table 4). Studies in rat models provide evidence that, compared with females, aging males exhibit decreased glomerular filtration rate and develop glomerular injury, glomerulosclerosis and proteinuria.³⁶ In addition, cases of acute renal failure had been reported in clinical patients or bodybuilders administering anabolic steroids.^{29,37} However, in the present study, we cannot ignore other factors that may have participated in deteriorating renal function parameters in anabolic androgenic steroid-using athletes e.g. consumption of high protein diet. Serum concentrations of triglycerides, VLDL-C and LDL-C were significantly higher in AASuseres (p < 0.05) than those in controls (table 5). The rise in serum levels was positively correlated with the intake of AAS. Anabolic androgenic steroids can elevate serum levels of triglycerides by 40-50% in bodybuilders and other power-training athletes.³⁸ Kiraly³⁹in 1988 reported similar results while studying the effects of large doses of testosterone and other anabolic androgenic steroids on serum lipids during a 12 week strength-training period. Elevated serum triglyceride (p < 0.05) levels were found with decreased serum HDL-C (p< 0.005). Serum LDL-C levels were significantly higher (p< 0.05) during steroid intake in studies reported by Fröhlich et al40 and Palatini et al⁴¹. Anabolic androgenic steroids -users had elevated levels of apolipoprotein B, a component of both LDL and VLDL.^{42,43} Conversely, circulating levels of LDL-C and VLDL-C were not significantly different while using AAS in studies reported by Sader et al⁴⁴ and Singh et al⁴⁵, respectively. A nonsignificant difference in serum total cholesterol

levels was found between the two studied groups (p > 0.05) (table 5). Our results confirm those reported by many studies^{40,42}. Anabolic androgenic steroids effects on plasma lipids have been reported to be unpredictable and depend on the dose, route of administration, and type of AAS (aromatizable or not).⁴⁶ Low have been associated dosages with hypolipemic response, while high doses have had opposite effects.^{47,48} Serum HDL-C levels in AAS-using bodybuilders were significantly lower than those in sedentary controls (p < p0.005) (table 4). The postulated mechanism to explain anabolic steroid-induced alteration in serum HDL-C levels is an increase in hepatic triglyceride lipase activity, an enzyme responsible for catabolizing HDL with its phospholipase activity.49 In addition, apolipoprotein A-1, a major component of HDL particle, was reported to be decreased by AAS.^{42,45} The results obtained in the present study showed absolute consistency with the available data. A non-significant difference in serum glucose levels was found between the two studied groups (p > 0.05) (table 5). The influence of testosterone and anabolic steroids glucose metabolism was on found controversial. Results of the present study agree with those reported by Friedl et al⁵⁰ who observed no alterations in fasting serum glucose in normal men treated with testosterone enanthate or nandrolone decanoate for 6 weeks. On the other hand, Cohen and Hickman⁵¹ concluded that power lifters taking high dose (mean 200 mg/day) of anabolic androgenic steroids had diminished glucose tolerance compared to non-steroid using athletes, obese sedentary men, or non-obese sedentary men. Such controversy in the corresponding literature may be explained to be due to differences in doses used. Higher AAS doses reduce insulin sensitivity and impair glucose tolerance.46 Although AAS doses used by subjects in the present study were considered to be high; they were much smaller than those used by athletes in Cohen and Hickman⁵¹ study. The most common side effects reported by our subjects were unusual aggression (53%), changes in libido (40%), acne formation (20%), headaches (27%) and premature hair loss (13%) (table 6). Perry et al⁵² reported that anabolic steroid using weightlifters were more aggressive than nonusers according to different psychiatric scores. Changes in libido appear to be the most common adverse effect reported in a group of present and past AAS users (approximately 61%).³⁴ Reports do indicate that toward the end of AAS cycle, some males may experience loss of libido.⁵³ Acne was also found very

common side effect among anabolic steroid users as reported by O'Sullivan et al.³⁴ Increases in acne formation is related to stimulation of sebaceous glands resulting in a more oily skin.³⁴ Premature hair loss does not appear to be very common. It is likely that androgenic alopecia as a result of AAS use is more prevalent in males who are genetically predisposed to balding.⁵⁴ Headaches are also not very common among AAS abusers. O'Sullivan et al³⁴ reported only 9% of AAS using athletes may develop headaches. However, the exact mechanism is unknown.

Conclusion

In conclusion, anabolic androgenic steroid abuse lowered serum concentrations of pituitary gonadotrophins, LH and FSH, and testosterone. Increased levels of prolactin were also manifested. Abuse of anabolic steroids probably causes cholestasis, however, with mildly elevated liver enzymes. In addition, effect of anabolic androgenic steroids on renal function indices was not well established indicating that other factors, such as high protein diet, may have contributed in elevation of blood urea and creatinine levels. Finally, lipid profile was impaired toward evidenced dyslipidaemia.

References

- Lombardo JA. Anabolic-androgenic steroids. NIDA Res Monogr 102. 1990, p 60-73.
- Rogol AD, Yesalis CE. Anabolicandrogenic steroids and athletes: What are the issues? J Clin Endocrinol Metab. 1992; 74(3): 465-469.
- Bagatell CJ, Bremner WJ. Androgens in men - Uses and abuses. *NEJM*. 1996; 334(11): 707-715.
- Kuhn CM. Anabolic steroids. Recent Progress in Hormone Research. 2002; 57: 411-434.
- 5. NIDA Research Report Steroid abuse and addiction: NIH Publication No. 00-3721. April, 2000.
- Thiblin I, Lindquist O, Rajs J. Cause and manner of death among users of anabolic androgenic steroids. *J Forensic Sci.* 2000; 45(1): 16-23.
- Wide L. Human Pituitary Gonadotrophins. In: Hormone assays and their clinical applications . Loraine JA and Bell ET (eds) .4th edition , Churchill Livingston .New York .1976, p 87 – 140 .
- 8. L' hermine M. Prolactin . In : Hormone Assays and their Clinical Application . Edited by Loraine JA and

Bell ET. 4TH edition , Churchill Livingston. New York . 1976 , 293- 332 .

- Kaplan AL, Pesce AJ (eds). Bilirubin .In

 Clinical Chemistry : Theory, Analysis
 and Correlation . 3rd edition , The CV
 Mosby Co . St Louis . Toronto.
 Princeton. 1984 ; 1238 1241 .
- **10.** Malloy HT , Evelyn KA . The determination of bilirubin with the photoelectric colorimeter . *J Biol Chem*. 1937; *112* (2) : 481-491.
- 11. Reitman S, Frankel S. As cited by BioMerieux kit (France). *Am J Clin Path*. 1957; 28: 56.
- Litwack G. Biochemistry of Hormones II : Steroid hormones . In : Textbook of Biochemistry with clinical correlations. Devlin TM (ed) . 3rd edition , Wiley J and Sons. 1992, p 901 – 925.
- **13.** Bessey OA, Lowry OH, Brock M J . A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum . *J Biol Chem* .1946: *164*: 321-329.
- 14. Jaffe MZ. As cited by Thermo Electron Corporation kit (Finland). *Physiol Chem.* 1886: *10*: 391-400.
- **15.** Fawcett JK, Scott JE. A rapid and precise method for the determination of urea . *J Clin Path* . 1960; *3*: 156-159.
- **16.** Richmond W. Preparation and properties of cholesterol oxidase from NO- cardio SP and its application to enzymatic assay of total cholesterol in serum *.Clin Chem.* 1973; *19*:1350.
- **17.** Fossati P, Principe L. Serum triglyceride determined colorimetrically with an enzyme that produces hydrogen peroxide . *Clin Chem.* 1982; 28(10) 2077-2080.
- 18. Sigiuchi H, Uji Y, Okabe H, et al . Direct measurement of high – density lipoprotein cholesterol in serum with polyethylene glycol – modified enzymes and sulfated α - cyclodextrin .Clin Chem. 1995 ; 41: 717- 723.
- **19.** Passey RB, Gillum RL, Fuller JB, et al. Evaluation and comparison of ten glucose methods and the reference method recommended in the proposed product class standard 1974. *Clin Chem.* 1977; *23:* 131-139.
- **20.** Friedwald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma without the use of the preoperative ultracentrifuge .*Clin Chem.* 1972; *18*: 499-502.
- **21.** Holma P, Adlercreutz H. Effects of an anabolic steroid (metandienon) on plasma LH, FSH and testosterone and the

- **22.** Gazvani MR, Buckett W, Luckas MJM, et al. Conservative management of azoospermia following steroid abuse. *Human Reproduction*. 1997; *12(8)*: 1706-1708.
- 23. Anderson RA, Baird DT. Male contraception. *Endocrine Reviews*. 2002; 23: 735-762.
- 24. Stoffel-Wagner B, Sommer L, Bildlingmaier F, et al. Effects of the gonadotropin-releasing-hormone agonist, D-Trp-6-GnRH, on prolactin secretion in healthy young men. *Horm Res.* 1995; *43*: 266-272.
- **25.** Leibenluft E, Schmidt PJ, Turner EH, et al. Effects of Leuprolide-induced hypogonadism and testosterone replacement on sleep, melatonin, and prolactin secretion in men. *J Clin Endocrinol Metab.* 1997; *82*: 3203-3207.
- **26.** Sultan-Sheriff D. Prolactin and the male. *Arab J Med.* 1983; *2(9)*: 11-14.
- 27. Clark AS, Kelton MC, Whitney AC. Chronic administration of anabolic steroids disrupts pubertal onset and estrous cyclicity in rats. *Biology of Reproduction*. 2003; 68: 465-471.
- **28.** Plea a GL. Toxic responses of the liver. In: Casarett and Doull's Toxicology: The Basic Science of Poisons. Doull J, Klaassen CD, Amdur MO (eds). 2nd edition, Macmillan Publishing Co. New York. 1980; ch.10: p 206-231
- **29.** Friedl KE. Reappraisal of the health risks associated with the use of high doses of oral and injectible androgenic steroids. *NIDA Res Monogr 102.* 1990, p 142-177.
- **30.** Stimac D, Milic S, Dintinjana RD, et al. Androgenic anabolic steroid-induced toxic hepatitis: Liver, Pancreas, and Biliary Tract. *J Clin Gastroenterol*. 2002; *35(4)*: 350-352.
- **31.** Dickerman RD, Pertusi RM, Zachariah NY, et al. Anabolic steroid-induced hepatotoxicity: Is it overstated? *Clin J Sport Med.* 1999; *9*: 34-39.
- **32.** Pertusi R, Dickerman RD, McConathy WJ. Evaluation of aminotransferase elevations in a bodybuilder using anabolic steroids: Hepatitis or rhabdomyolysis? *JAOA*. 2001; *101(7)*: 391-394.
- **33.** hormones in former anabolic-androgenic steroid abusers. J Steroid Biochem Mol Biol. 2003; 84: 369-375.
- **34.** O'Sullivan AJ, Kennedy MC, Casey JH, et al. Anabolic-androgenic steroids: Medical

assessment of present, past and potential users. *MJA*. 2000; 173: 323-327.

- **35.** Lewis JH. Drug-induced liver disease. *Adv Gastroenterol.* 2000; *84(5)*: 1275-1311.
- **36.** Dubey RK, Oparil S, Imthurn B, et al. Sex hormones and hypertension. *Cardiovascular Research*. 2002; *53*: 688-708.
- **37.** Socas L, Zumbado M, Pérez-Luzardo O, et al. Hepatocellular adenoma associated with anabolic androgenic steroid abuse in bodybuilders: A report of two cases and review of the literature. *Br J Sports Med.* 2005; *39*: e27.
- Deligiannis A. Cardiac side effects of anabolics. Osterr J Sports Med. 2002; 2: 35-37.
- **39.** Kiraly CL. Androgenic-anabolic steroid effects on serum and skin surface lipids, on red cells, and on liver enzymes. *Int J Sports Med.* 1988; *9(4)*: 249-252.
- **40.** Fröhlich J, Kullmer T, Urhausen A, et al. Lipid profile of bodybuilders with or without self-administration of anabolic steroids. *Eur J Applied Phys.* 1989; *59*: 98-103.
- **41.** Palatini P, Giada F, Garavelli G, et al. Cardiovascular effects of anabolic steroids in weight-trained subjects. *J Clin Pharmacol.* 1996; *36*: 1132-1140.
- **42.** Hartgens F, Rietjens G, Keizer HA, et al. Effects of androgenic-anabolic steroids on apolipoprotiens and lipoprotein (a). *Br J Sports Med.* 2004; *38*: 253-259.
- **43.** Lajarin F, Zaragoza R, Tovar I, et al. Evolution of serum lipids in two male bodybuilders using anabolic steroids. *Clin Chem.* 1996; *42(6)*: 970-972.
- **44.** Sader MA, Griffiths KA, McCredie RJ, et al. Androgenic anabolic steroids and arterial structure and function in male bodybuilders. *J Am Coll Cardiol*. 2001; *37*: 224-230.
- **45.** Singh AB, Hsia S, Alaupovic P, et al. The effects of varying doses of testosterone on insulin insensitivity, plasma lipids, apolipoproteins, and C-reactive protein in healthy young men. *J Clin Endocrinol Metab.* 2002; *87*: 136-143.
- **46.** Bhasin S. Effects of testosterone administration on fat distribution, insulin sensitivity, and atherosclerosis progression. *CID*. 2003; *37*(suppl 2): s142-s149.
- **47.** Reeves RD, Morris MD, Barbour GL. Hyperlipidemia due to oxymetholone therapy. Occurrence in a long-term hemodialysis patient. *JAMA*. 1976; *236(5)*: 469.

- **48.** Khaw KT, Barrett-Connor E. Endogenous sex hormones, high density lipoprotein cholesterol, and other lipoprotein fractions in men. *Arteriosclerosis and Thrombosis*. 1991; *11*: 489-494.
- **49.** Glazer G. Atherogenic effect of anabolic steroids on serum lipid levels. A literature review. *Arch Intern Med.* 1991; *151*: 1925-1933.
- **50.** Friedl KE, Jones RE, Hannan CJ, et al. The administration of pharmacological doses of testosterone or 19-nortestosterone to normal men is not associated with increased insulin secretion or impaired glucose
- **51.** Cohen JC, Hickman R. Insulin resistance and diminished glucose tolerance in power lifters ingesting anabolic steroids. *J Clin Endocrinol Metab.* 1987; *64*: 960-963.

- **52.** Perry PJ, Kutcher EC, Lund BC, et al. Measures of aggression and mood changes in male weightlifters with and without anabolic steroid use. *J Forensic Sci.* 2003; *48*: 16.
- 53. Hoffman JR, Ratamess NA. Medical issues associated with anabolic steroid use: Are they exaggerated? J Sports Sci Med. 2006; 5: 182-193.
- **54.** Kaufman KD, Dawber RP. Finasteride, a type 2 5 alpha-reductase inhibitor, in the treatment of men with androgenic alopecia. *Expert Opinion of Investigational Drugs.* 1999; 8: 403-415.