Spanlastics for Targeted CNS Drug Delivery
DOI:
https://doi.org/10.31351/vol34iss3pp1-11Abstract
Numerous pharmacological compounds now on the market are ineffective in treating brain disorders ,they are not getting to the brain with the concentration required to have a pharmacological effect. Since there are many barrier as blood brain barrier (BBB), P-glycoprotein (an active efflux transporter), and specific enzymatic activity are some of the mechanisms that protect the brain from harmful circumstances. These systems, in particular BBB hinder therapeutic interventions of many medications . Thus, the majority of the medicine cannot give the desired effect because they cannot penetrate the brain, so they are useless in the treatment of brain illnesses . As a result, numerous Therefore, strategies that could enhance drug delivery to the brain. Thus, the vesicular medication delivery devices have made important advancements in nanotechnology. These systems are useful for avoiding a number of problems with traditional dosage forms, liposomes, nanoparticles and spanlastic are proving to be more effective. Spanlastics are surfactant-based elastic vesicular drug delivery method that traps the medication in the core cavity as a bilayer, they are amphiphilic in nature and deliver both hydrophilic and hydrophobic medications . Surface active agent , edge activator and ethanol are used to prepare the spanlastic and many methods can be used to prepare of these vesicles .
How to Cite
Publication Dates
Received
Revised
Accepted
Published Online First
References
Battaglia, L., Panciani, P. P., Muntoni, E., Capucchio, M. T., Biasibetti, E., de Bonis, P., Mioletti, S., Fontanella, M., & Swaminathan, S. . Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. In Expert Opinion on Drug Delivery 2018;15 (4), 4: 369–378. Taylor and Francis Ltd. https://doi.org/10.1080/17425247.2018.1429401.
Lee, D., & Minko, T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. In Pharmaceutics, 2021; 13(12). MDPI. https://doi.org/10.3390/pharmaceutics13122049
Assadpour, S., Shiran, M. R., & Akhtari, J. . Nose-to Brain Direct Delivery of Nanodrug Formulations in Treatment of Neurological Disorders: A Review Study. In J Mazandaran Univ Med Sci 2021; 31. Persian.
Hamzah, M. layth, & Kassab, H. J. . Frovatriptan succinate intranasal delivery for brain targeting –in vivo study. The Iraqi Journal of Veterinary Medicine, 2023; 47(2), 101–109. https://doi.org/10.30539/me2mm152
Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and alzheimer disease dementia: A randomized clinical trial. JAMA Neurol 2020;77(9):1099–109. [PubMed: 32568367] .
Minn A, Leclerc S, Heydel J-M, Minn A-L, Denizot C, Cattarelli M, et al. Drug Transport into the Mammalian Brain: The Nasal Pathway and its Specific Metabolic Barrier. Journal of Drug Targeting. 2002 ;10(4):285–96.
Alnasser S. A review on nasal drug delivery system and its contribution in therapeutic management. Asian Journal of Pharmaceutical and Clinical Research. 2019 7;12(1):40-45.
Yasir, M., Vir Singh Sara, U., Som, I., Gaur, P., Singh, M., & Ameeduzzafar, . Nose to Brain Drug Delivery: A Novel Approach Through Solid Lipid Nanoparticles. Current Nanomedicine, 2016 ;6(2):105–132. https://doi.org/10.2174/2468187306666160603120318
Selvaraj, K., Gowthamarajan, K., & Karri, V. V. S. R. . Nose-to-brain transport pathways an overview: the potential of nanostructured lipid carriers in the nose-to-brain targeting. In Artificial Cells, Nanomedicine and Biotechnology 2018; 46(8) : 2088–2095. https://doi.org/10.1080/21691401.2017.1420073.
Roberts AG. The Structure and Mechanism of Drug Transporters. Methods Mol Biol. 2021; 2342:193-234. doi: 10.1007/978-1-0716-1554-6_8 .
Markovic, M., Zur, M., Garsiani, S., Porat, D., Cvijić, S., Amidon, G. L., & Dahan, A.. The Role of Paracellular Transport in the Intestinal Absorption and Biopharmaceutical Characterization of Minoxidil. Pharmaceutics . 2022; 14(7). https://doi.org/10.3390/pharmaceutics14071360 .
León, G., Gómez, E., Miguel, B., Hidalgo, A. M., Gómez, M., Murcia, M. D., & Guzmán, M. A. Feasibility of Adsorption Kinetic Models to Study Carrier-Mediated Transport of Heavy Metal Ions in Emulsion Liquid Membranes. Membranes . 2022; 12(1). https://doi.org/10.3390/membranes12010066
Patharapankal, E. J., Ajiboye, A. L., Mattern, C., & Trivedi, V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. In Pharmaceutics . 2024 ;16 (1). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pharmaceutics16010066
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm. 2018, 128, 337–362.
Ainurofiq, A., Prasetya, A., Rahayu, B. G., al Qadri, M. S., Kovusov, M., & Laksono, O. E. P. Recent developments in brain-targeted drug delivery systems via the intranasal route. Farmacja Polska . 2022;, 78(12): 695–708. https://doi.org/10.32383/farmpol/163334
Razzak, R. A., Florence, G. J., & Gunn-Moore, F. J. Approaches to cns drug delivery with a focus on transporter-mediated transcytosis. In International Journal of Molecular Sciences . 2019; 20( 12). MDPI AG. https://doi.org/10.3390/ijms20123108
Liu, X.; Jiang, J.; Meng, H. Transcytosis - An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery. Theranostics . 2019; 9 (26) : 8018-8025. DOI: 10.7150/thno.38587.
Dhuria SV, Hanson LR, Frey WH. Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. J Pharmacol Exp Ther. 2009;328(1):312-20.
Md S, Khan RA, Mustafa G, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013; 48: 393–405.
Patharapankal, E. J., Ajiboye, A. L., Mattern, C., & Trivedi, V. . Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. In Pharmaceutics .2024 ; 16(1) :66 . Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pharmaceutics16010066 .
Zhang, W., Sigdel, G., Mintz, K. J., Seven, E. S., Zhou, Y., Wang, C., & Leblanc, R. M.. Carbon dots: A future blood–brain barrier penetrating nanomedicine and drug nanocarrier. In International Journal of Nanomedicine . 2021 ; 16 : 5003–5016). Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S318732.
Pimentel, E., Sivalingam, K., Doke, M., &Samikkannu, T.. Effects of Drugs of Abuse on the Blood-Brain Barrier: A Brief Overview. In Frontiers in Neuroscience. 2020 ; 14 . Frontiers Media S.A. https://doi.org/10.3389/fnins.2020.00513.
Kumar, A., Ahmad, A., Vyawahare, A., & Khan, R. . Membrane Trafficking and Subcellular Drug Targeting Pathways. In Frontiers in Pharmacology , 2020 ;11. Frontiers Media S.A. https://doi.org/10.3389/fphar.2020.00629 .
Thomas, L. M., & Khasraghi, A. H . Nanotechnology-based topical drug delivery systems for management of dandruff and seborrheic dermatitis: An overview. In Iraqi Journal of Pharmaceutical Sciences .2020 29 ( 1) : pp. 12–32). University of Baghdad - College of Pharmacy. https://doi.org/10.31351/VOL29ISS1PP12-32.
Tamer, M. A., & Kassab, H. J. . The development of abrain targeted mucoadhesive amisulpride loaded nanostructured lipid carrier . Farmacia . 2023; 71(5), 1032–1044. https://doi.org/10.31925/farmacia.2023.5.18
Emad, N. A., Ahmed, B., Alhalmi, A., Alzobaidi, N., & Al-Kubati, S. S. Recent progress in nanocarriers for direct nose to brain drug delivery. In Journal of Drug Delivery Science and Technology . 2021; 64. Editions de Sante. https://doi.org/10.1016/j.jddst.2021.102642.
Formica, M. L., Real, D. A., Picchio, M. L., Catlin, E., Donnelly, R. F., & Paredes, A. J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. In Applied Materials Today . 2022; 29. Elsevier Ltd. https://doi.org/10.1016/j.apmt.2022.101631.
Ren, Y., Nie, L., Zhu, S., & Zhang, X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. In International Journal of Nanomedicine . 2022 ; 17: 4861–4877. Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S382192.
Ali, S. K., & Al-Akkam, E. J. . Effects of Different Types of Bile Salts on the Physical Properties of Ropinirole-Loaded Bilosomes. Al-Rafidain Journal of Medical Sciences. 2023; 5: 134–142. https://doi.org/10.54133/ajms.v5i.176
Naji, G. H., & al Gawhari, F. J.. Study the Effect of Formulation Variables on Preparation of Nisoldipine Loaded Nano Bilosomes. Iraqi Journal of Pharmaceutical Sciences .2023 ; 32 :271–282. https://doi.org/10.31351/vol32issSuppl.pp271-282
Younus Alkwak, R. S., & Rajab, N. A. . Lornoxicam-Loaded Cubosomes: - Preparation and In vitro Characterization. Iraqi Journal of Pharmaceutical Sciences . 2022; 31(1): 144–153. https://doi.org/10.31351/vol31iss1pp144-153
Albash, R., Al-Mahallawi, A. M., Hassan, M., & Alaa-Eldin, A. A. . Development and optimization of terpene-enriched vesicles (terpesomes) for effective ocular delivery of fenticonazole nitrate: In vitro characterization and in vivo assessment. International Journal of Nanomedicine. 2020; 16: 609–621. https://doi.org/10.2147/IJN.S274290.
Saleh, A., Khalifa, M., Shawky, S., Bani-Ali, A., & Eassa, H. .Zolmitriptan intranasal spanlastics for enhanced migraine treatment; formulation parameters optimized via quality by design approach. Scientia Pharmaceutica . 2021: 89(2). https://doi.org/10.3390/scipharm89020024 .
Alaaeldin, E., Abou-Taleb, H. A., Mohamad, S. A., Elrehany, M., Gaber, S. S., & Mansour, H. F. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and down-regulation of tnf-α, nf-кb and cox-2 in complete freund’s adjuvant-induced arthritis model in rats. International Journal of Nanomedicine . 2021; 16: 133–145. https://doi.org/10.2147/IJN.S289828
Albash, R., Fahmy, A. M., Hamed, M. I. A., Darwish, K. M., & El-Dahmy, R. M. . Spironolactone hyaluronic acid enriched cerosomes (HAECs) for topical management of hirsutism: in silico studies, statistical optimization, ex vivo, and in vivo studies. Drug Delivery . 2021; 28(1); 2289–2300. https://doi.org/10.1080/10717544.2021.1989089 .
Albash, R., Yousry, C., Al-Mahallawi, A. M., & Alaa-Eldin, A. A. . Utilization of PEGylated cerosomes for effective topical delivery of fenticonazole nitrate: in-vitro Characterization, statistical optimization, and in-vivo assessment. Drug Delivery . 2021; 28(1): 1–9. https://doi.org/10.1080/10717544.2020.1859000
Fareed, N. Y., & Kassab, H. J. . Diacerein Loaded Novasome for Transdermal Delivery: Preparation, In-Vitro Characterization and Factors Affecting Formulation. Iraqi Journal of Pharmaceutical Sciences . 2023 ; 32: 214–224. https://doi.org/10.31351/vol32issSuppl.pp214-224
Salih, O., & Muhammed, E. . Preparation, Evaluation, and Histopathological Studies of Ondansetron-Loaded Invasomes Transdermal Gel. Journal of Research in Pharmacy . 2024; 28(1), 289–303. https://doi.org/10.29228/jrp.696 .
Mosallam, S., Ragaie, M. H., Moftah, N. H., Elshafeey, A. H., & Abdelbary, A. A. . Use of novasomes as a vesicular carrier for improving the topical delivery of terconazole: In vitro characterization, in vivo assessment and exploratory clinical experimentation. International Journal of Nanomedicine . 2021; 16: 119–132. https://doi.org/10.2147/IJN.S287383
Noor, A. D., & Rajab, N. A. . Formulation and characterization of niosomes for controlled delivery of tolmetin. Journal of Pharmaceutical Negative Results . 2022 ; 13(4): 159–169. https://doi.org/10.47750/pnr.2022.13.04.021
Naji, G. H., & al Gawhari, F. J. . Study the Effect of Formulation Variables on Preparation of Nisoldipine Loaded Nano Bilosomes. Iraqi Journal of Pharmaceutical Sciences . 2023 ; 32: 271–282. https://doi.org/10.31351/vol32issSuppl.pp271-282
Qais Abdulkafi, A., Nazar Abdal-Hammid, S., Alwan, L. A., & Nazar Abd Alhammid, S. (n.d.). A modern method for the delivery of nanovesicular drugs, spanlastics . International Academic and Research Journal of Pharmacy . 2023 ; 4(1) : 1-10 . https://doi.org/10.47310/iarjp.2023.v04i06.001.
Al-Sawaf, O. F., & Jalal, F. . Novel Probe Sonication Method for the Preparation of Meloxicam Bilosomes for Transdermal Delivery: Part One. In Journal of Research in Medical and Dental Science .2023; 11(6) :15-20 . www.jrmds.in
Kakkar S, Kaur IP. Spanlastics — A novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011;13(10):202–210.
Sharma A, Pahwa S, Bhati S, Kudeshia P. Spanlastics: a Modern Approach for Nanovesicular Drug Delivery System. Int J Pharm Sci Res. 2020;11(3):1057-1065
Ren Y, Nie L, Zhu S, Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int J Nanomedicine. 2022;17:4861-4877 https://doi.org/10.2147/IJN.S382192 .
Chauhan MK, Verma A. Spanlastics-Future of Drug Delivery and Targeting. Verma al World J Pharm Res. 2017;6(12):429-446.
Almuqbil, R. M., Sreeharsha, N., & Nair, A. B. Formulation-by-Design of Efinaconazole Spanlastic Nanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. Pharmaceutics . 2022 ; 14(7). https://doi.org/10.3390/pharmaceutics14071419 .
Alhammid S.N. , Kassab H J. , Hussein L. S. , Haiss M.A. , Hussein k. Alkufi H. K. Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery . MA'AEN JOURNAL FOR MEDICAL SCIENCES . 2023; 2:100e107 .
Chauhan MK, Verma A. Spanlastics-Future of Drug Delivery and Targeting. Verma al World J Pharm Res. 2017;6(12):429-446.
Jadhav KR, Pawar AY, Bachhav AA, Ahire SA. Proniosome: A novel non-ionic provesicules as potential drug carrier. Asian J Pharm. 2016; 10(3): 210–222.
Aziz D, Mohamed SA, Tayel S, Makhlouf A. Enhanced Ocular Anti-Aspergillus Activity of Tolnaftate Employing Novel Cosolvent-Modified Spanlastics: Formulation, Statistical Optimization, Kill Kinetics, Ex Vivo Trans-Corneal Permeation, In Vivo Histopathological and Susceptibility Study. Pharmaceutics. 2022; 29(1) :1-21.
Elhabak M, Ibrahim S, Abouelatta SM. Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv. 2021; 28(1):445–453.
Abdelmonem R, Nabarawi M, Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv. 2018;25(1):70–77.
Kamath, K., & Ramakrishna Shabaraya, A.Spanlastics: amodern formulation approach in drug delivery . European journal of pharmaceutical and medical research . 2023 ; 10(4) : 96-102 .
Ahmed Al-Zubaidi, labeeb, & Salih Al-Rubaie, M. . Multi Lamellar Vesicles (Mlvs) Liposomes Preparation by Thin Film Hydration Technique. In Eng. &Tech.Journal . 2014 ; 32(3).
Al-mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm. 2017; 157-164.
Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech. 2022 ; 11;23(4):112. doi: 10.1208/s12249-022-02217-9. PMID: 35411425.
Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;6249–6261.
Mekkawy AI, Eleraky NE, Soliman GM, Elnaggar MG, Elnaggar MG. Combinatorial Therapy of Letrozole- and Quercetin-Loaded Spanlastics for Enhanced Cytotoxicity against MCF-7 Breast Cancer Cells. Pharmaceutics. 2022;14(7) :1-21.
Paecharoenchai O, Teng L, Yung BC, Teng L, Opanasopit P, Lee RJ. Nonionic surfactant vesicles for delivery of RNAi therapeutics. Nanomedicine (Lond). 2013 ;8(11):1865-73. doi: 10.2217/nnm.13.155. PMID: 24156490; PMCID: PMC3971008.
Singh S, Vardhan H, Kotla N, Maddiboyina B, Sharma D, Webster T. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int J Nanomedicine. 2016;11:1475-1482 .
El Maghraby GM, Williams AC, Barry BW. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm. 2004;276(1-2):143-61. doi: 10.1016/j.ijpharm.2004.02.024. PMID: 15113622.
Moqejwa T, Marimuthu T, Kondiah PPD, Choonara YE. Development of Stable Nano-Sized Transfersomes as a Rectal Colloid for Enhanced Delivery of Cannabidiol. Pharmaceutics. 2022;14(4):703. doi: 10.3390/pharmaceutics14040703. PMID: 35456536; PMCID: PMC9032849.
Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;6249–6261.
Elmowafy E, El-Gogary RI, Ragai MH, Nasr M. Novel antipsoriatic fluidized spanlastic nanovesicles: In vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm. 2019;26(4):1-9.
Almuqbil, R. M., Sreeharsha, N., & Nair, A. B.. Formulation-by-Design of Efinaconazole Spanlastic Nanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. Pharmaceutics . 2022; 14(7). https://doi.org/10.3390/pharmaceutics14071419 .
Badria F, Mazyed E. Formulation of Nanospanlastics as a Promising Approach for Improving the Topical Delivery of a Natural Leukotriene Inhibitor (3-Acetyl-11-Keto-β-Boswellic Acid): Statistical Optimization, in vitro Characterization, and ex vivo Permeation Study. Drug Des Devel Ther.2020;14:3697-3721 .
Kaur IP, Rana C, Singh M, Bhushan S, Singh H, Kakkar S. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. J Ocul Pharmacol Ther. 2012;28(5):484–496.
Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;6249–6261.
Hussein J, K., & Khalid Kadhem, A. K. Formulation and Evaluation of Idebenone Microemulsion as a Potential Approach for the Transmucosal Drug Delivery Systems. Iraqi Journal of Pharmaceutical Sciences . 2024 ; 33(1): 79–88. https://doi.org/10.31351/vol33iss1pp79-88
Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. Topical Delivery of Fenoprofen Calcium via Elastic Nano-vesicular Spanlastics: Optimization Using Experimental Design and In Vivo Evaluation. AAPS PharmSciTech. 2017;18(8):2898–2909.
Shamma, Rehab Nabil, et,al. Enhanced skin targeting of retinoic acid spanlastics: in vitro characterization and clinical evaluation in acne patients. Journal of liposome research .2019;5(2): 283-290.
Al Hazzaa, S. A., & Rajab, N. A. Cilnidipine Nanocrystals, Formulation and Evaluation for Optimization of Solubility and Dissolution Rate. Iraqi Journal of Pharmaceutical Sciences. 2023; 32: 127–135. https://doi.org/10.31351/vol32issSuppl.pp127-135.
Allah, A. K. A., & Hussein, A. A. Preparation and evaluation of darifenacin hydrobromide loaded nanostructured lipid carriers for oral administration. Iraqi Journal of Pharmaceutical Sciences . 2018 ; 27(1): 53–68. https://doi.org/10.31351/vol27iss1pp53-68
Jaber, S. H., & Rajab, N. A. Preparation, In-vitro, Ex-vivo, and Pharmacokinetic Study of Lasmiditan as Intranasal Nanoemulsion-based In Situ Gel. Pharmaceutical Nanotechnology. 2024 ; 12. https://doi.org/10.2174/0122117385285009231222072303 .
Ali, M. M., Shoukri, R. A., & Yousry, C. . Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Delivery and Translational Research. 2023; 13(4): 1153–1168. https://doi.org/10.1007/s13346-022-01285-5
Mekkawy AI, Eleraky NE, Soliman GM, Elnaggar MG, Elnaggar MG. Combinatorial Therapy of Letrozole- and Quercetin-Loaded Spanlastics for Enhanced Cytotoxicity against MCF-7 Breast Cancer Cells. Pharmaceutics. 2022;14(7) :1-21.
Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. Topical Delivery of Fenoprofen Calcium via Elastic Nano-vesicular Spanlastics: Optimization Using Experimental Design and In Vivo Evaluation. AAPS PharmSciTech. 2017;18(8):2898–2909.
Sezgin-Bayindir Z, Antep MN, Yuksel N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS PharmSciTech. 2015 ;16(1):108-17. doi: 10.1208/s12249-014-0213-9. Epub 2014 Sep 10. PMID: 25204859; PMCID: PMC4309817.
Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9(3):740-7. doi: 10.1208/s12249-008-9105-1. Epub 2008 Jun 18. PMID: 18563578; PMCID: PMC2977028.
Ali, M. M., Shoukri, R. A., & Yousry, C.. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Delivery and Translational Research . 2023; 13(4): 1153–1168. https://doi.org/10.1007/s13346-022-01285-5
Agha, O. A., Girgis, G. N. S., El-Sokkary, M. M. A., & Soliman, O. A. E. A. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. International Journal of Pharmaceutics . 2023 ; 6 (12) . https://doi.org/10.1016/j.ijpx.2023.100201
Alharbi, W. S., Hareeri, R. H., Bazuhair, M., Alfaleh, M. A., Alhakamy, N. A., Fahmy, U. A., Alamoudi, A. A., Badr-Eldin, S. M., Ahmed, O. A., AlGhamdi, S. A., & Naguib, M. J.
Spanlastics as a Potential Platform for Enhancing the Brain Delivery of Flibanserin: In Vitro Response-Surface Optimization and In Vivo Pharmacokinetics Assessment. Pharmaceutics . 2022; 14(12). https://doi.org/10.3390/pharmaceutics14122627
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Iraqi Journal of Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.