Adipsin and Leptin as Therapeutic Targets by Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Mellitus: Review Article

Authors

  • Sura K. Mohammed Department of Pharmacy Techniques , Northern Technical University, Mosul, Iraq.
  • Zainab H. Fathi Department of Pharmacognosy and Medicinal Plants /College of Pharmacy /University of Mosul / Mosul /Iraq
  • Jehan A. Mohammad Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Mosul, Mosul, Iraq

DOI:

https://doi.org/10.31351/vol34iss4pp1-12

Keywords:

Adipsin, Dipeptidyl peptidase-4, Leptin, Type 2 diabetes mellitus

Abstract

Type 2 diabetes mellitus (T2DM), one of the most common metabolic diseases, is caused by a mix of insulin-sensitive tissues' inadequate response to insulin and pancreatic β-cells' impaired insulin secretion. Adipsin is involved in preserving the homeostasis of adipose tissues and enhancing insulin secretion in response to glucose. Adipose tissue secretes adipokines, which are cell-signaling proteins that have been connected to various pathologies as well as a low-grade state of inflammation. Although the regulation of energy homeostasis is a well-established function of the obesity hormone leptin, there is increasing evidence that leptin is also essential for glycaemic control. The hormone leptin is a 167-residue peptide produced by the Lep gene. Adipose tissue is the main source of its secretion. Leptin levels in the blood are undetectable when the Lep gene is functionally inactivated. To increase the precision of disease prediction, offer fresh perspectives on pathophysiology, and aid in the prevention of type 2 diabetes in the future, a validated novel biomarker is necessary. Targeting endogenous proteins has led to the development of several more advanced diagnostic techniques, with adipsin being one of the most promising targets. Therefore, the aim of this review study is to assess the effects of DPP-4 inhibitors on adipsin and leptin in T2DM. The function of DPP-4 (DPP4) inhibitors has changed in recent years. DPP-4 inhibitors do not result in hypoglycemia or weight gain, have a good safety profile, an anti-inflammatory profile, and do not need dose escalation. It can also be used with older diabetic patients and patients with certain forms of chronic kidney disease. Adipsin has the potential to become an early novel biomarker in patients with T2DM.

How to Cite

1.
Fathi Z, Mohammad J. Adipsin and Leptin as Therapeutic Targets by Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Mellitus: Review Article. Iraqi Journal of Pharmaceutical Sciences [Internet]. 2025 Dec. 20 [cited 2025 Dec. 21];34(4):1-12. Available from: https://www.bijps.uobaghdad.edu.iq/index.php/bijps/article/view/3628

Publication Dates

Received

2024-04-15

Revised

2024-04-26

Accepted

2024-06-10

Published Online First

2025-12-20

References

Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51-60. https://doi.org/10.1038/s41586-019-1797-8

Sylow L, Tokarz VL, Richter EA, Klip A. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metabolism. 2021;33(4):758-80.

Lima JE, Moreira NC, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2022;874:503437.

Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care. 2014;37(6):1751-8. https:// doi .org /10.2337/dc14-0396.

Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23(7):804-14. https:// doi. org/ 10. 1038/ nm.4350.

Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377-90. https:// doi. org/10. 1038/ s41581-020-0278-5.

Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. International Journal of Molecular Sciences. 2021;22(2):546.

Mohajan D, Mohajan HK. Obesity and Its Related Diseases: A New Escalating Alarming in Global Health. Journal of Innovations in Medical Research. 2023;2(3):12-23.

Lee M-W, Lee M, Oh K-J. Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. Journal of clinical medicine. 2019;8(6):854.

Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Molecular and cellular endocrinology. 2010;316(2):129-39.

Mohammed MK, Fathi ZH, Mohammad JA. Effects of Angiotensin Receptor Blockers on Apelin and Visfatin in Hypertension. Al- Anbar Medical Journal. 2024. https:// doi. org/ 10. 33 091/amj.2024.146572.1565

Flier JS, Cook KS, Usher P, Spiegelman BM. Severely impaired adipsin expression in genetic and acquired obesity. Science. 1987; 237 (4813):405-8.

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425-32.

Fathi Z, Younus Z, Mahmood S, Mohammad J. Levels of adiponectin, malondialdehyde and lipid profile in women with polycystic ovary syndrome. ACTA Pharmaceutica Sciencia. 2024;62(1). https://doi.org/10.23893/1307-2080 .APS6203.

Jumaah YK, Fathi ZH, Mohammad JA. Angiotensin-Converting Enzyme Inhibitors and Adipokines: The Role of Visfatin and Apelin in Cardiovascular Disease Management. Iraqi Journal of Pharmacy. 2023;20(Supplementary Issue 1):250-60. https://doi.org/10.33899/iphr.2023.143923.1062

Fathi ZH, Mohammad JA, Mohammed MH. Levels of Myeloperoxidase, Malondialdehyde and Lipid Profile in Type 2 Diabetic Patients on Metformin Versus Glibenclamide Therapy. Systematic Reviews in Pharmacy. 2020;11(11):1777-82. https://doi.org /10. 31838 /srp.2020.11.248.

Mohammed M, Mohammad J, Fathi Z, Al-Hamdany M, Alkazzaz N. Comparative evaluation of cystatin C and neutrophil gelatinase-associated lipocalin in patients with thalassemia major versus thalassemia intermedia. Pharmacia. 2021;68(4):741-6. https: //doi.org/10.3897/pharmacia.68.e71475.

Zainab H. Fathi, Jehan A. Mohammad, Marwah H. Mohammed. Evaluation of the Vasoprotective Effects of Metformin versus Glibenclamide in Type 2 Diabetic Patients. Research Journal of Pharmacy and Technology. 2021;14(12):6409-2. https://doi .org / 10. 52711 / 0974-360X.2021 .01108.

Ohtsuki T, Satoh K, Shimizu T, Ikeda S, Kikuchi N, Satoh T, et al. Identification of adipsin as a novel prognostic biomarker in patients with coronary artery disease. Journal of the American Heart Association. 2019;8(23):e013716.

Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987; 237 (4813):402-5.

Milek M, Moulla Y, Kern M, Stroh C, Dietrich A, Schön MR, et al. Adipsin serum concentrations and adipose tissue expression in people with obesity and type 2 diabetes. International Journal of Molecular Sciences. 2022;23(4):2222.

Wang J-S, Lee W-J, Lee I-T, Lin S-Y, Lee W-L, Liang K-W, et al. Association between serum adipsin levels and insulin resistance in subjects with various degrees of glucose intolerance. Journal of the Endocrine Society. 2019;3(2):403-10.

Son J, Accili D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Experimental & Molecular Medicine. 2023;55(8):1652-8.

Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Frontiers in Endocrinology. 2023;14:1076343.

Gómez-Banoy N, Guseh JS, Li G, Rubio-Navarro A, Chen T, Poirier B, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nature medicine. 2019;25(11):1739-47.

Zhou Q, Ge Q, Ding Y, Qu H, Wei H, Wu R, et al. Relationship between serum adipsin and the first phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance. Journal of diabetes investigation. 2018;9(5):1128-34. https:// doi. org /10. 1111 /jdi.12819.

Kim J, Oh C-M, Kim H. The Interplay of Adipokines and Pancreatic Beta Cells in Metabolic Regulation and Diabetes. Biomedicines. 2023;11(9):2589.

Childs GV, Odle AK, MacNicol MC, MacNicol AM. The importance of leptin to reproduction. Endocrinology. 2021;162(2):bqaa204.

Fujita Y, Yamashita T. The effects of leptin on glial cells in neurological diseases. Frontiers in neuroscience. 2019;13:828.

Chmielewski A, Hubert T, Descamps A, Mazur D, Daoudi M, Ciofi P, et al. Preclinical Assessment of Leptin Transport into the Cerebrospinal Fluid in Diet-Induced Obese Minipigs. Obesity (Silver Spring, Md). 2019;27(6):950-6. https:// doi. org /10. 1002/ oby.22465.

Cakir I, Diaz-Martinez M, Lining Pan P, Welch EB, Patel S, Ghamari-Langroudi M. Leptin receptor signaling in Sim1-expressing neurons regulates body temperature and adaptive thermogenesis. Endocrinology. 2019; 160 (4) :863 -79.

Caron A, Lee S, Elmquist JK, Gautron L. Leptin and brain–adipose crosstalks. Nature Reviews Neuroscience. 2018;19(3):153-65.

Lee MJ, Fried SK. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab. 2009;296(6):E1230-8. https:// doi. org/ 10. 1152 /ajpendo.90927.2008.

Wu Q, Li B, Li J, Sun S, Yuan J, Sun S. Cancer-associated adipocytes as immunomodulators in cancer. Biomarker Research. 2021;9(1):1-21.

Romanò N, Lafont C, Campos P, Guillou A, Fiordelisio T, Hodson DJ, et al. Median eminence blood flow influences food intake by regulating ghrelin access to the metabolic brain. JCI insight. 2023;8(3).

Mello JDC, Gomes LEM, Silva JF, Siqueira NSN, Pascoal LB, Martinez CAR, et al. The role of chemokines and adipokines as biomarkers of Crohn’s disease activity: a systematic review of the literature. American Journal of Translational Research. 2021;13(8):8561.

Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Frontiers in endocrinology. 2021;12:585887.

Moonishaa TM, Nanda SK, Shamraj M, Sivaa R, Sivakumar P, Ravichandran K. Evaluation of leptin as a marker of insulin resistance in type 2 diabetes mellitus. International Journal of Applied and Basic Medical Research. 2017;7(3):176.

Choi JR, Kim JY, Huh JH, Kim SH, Koh SB. Contribution of obesity as an effect regulator to an association between serum leptin and incident metabolic syndrome. Clinica Chimica Acta. 2018;487:275-80.

Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nature reviews nephrology. 2019;15(6):367-85.

Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int J Med Sci. 2016;13(1):25-38.https:/ /doi.org /10.7150 /ijms. 13800.

Shebl TH, Noor El Deen AA, Younis HA, Soliman AM, Ashmawy AM, Ali MMN. Relationship between serum leptin concentration and insulin resistance syndrome in patients with type 2 diabetes mellitus. Journal of Current Medical Research and Practice. 2017;2(2):125-32.

Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the West Virginian population. International journal of medical sciences. 2016;13(1):25.

Friedman JM. Leptin and the endocrine control of energy balance. Nature Metabolism. 2019;1(8):754-64.

Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regulatory peptides. 1999;85(1):9-24.

Ghorpade DS, Ozcan L, Zheng Z, Nicoloro SM, Shen Y, Chen E, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555(7698):673-7.

Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease. Diabetes, Obesity and Metabolism. 2018;20:5-21.

Liu X, Liu Y, Liu H, Li H, Yang J, Hu P, et al. Dipeptidyl-peptidase-IV inhibitors, imigliptin and alogliptin, improve Beta-cell function in type 2 diabetes. Frontiers in Endocrinology. 2021;12:694390.

Holst JJ, Deacon CF. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes. 1998;47(11):1663-70.

Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44(9):1126-31. https://doi.org/10.2337/diab.44.9.1126.

Koufakis T, Zografou I, Doumas M, Kotsa K. The Current Place of DPP4 Inhibitors in the Evolving Landscape of Type 2 Diabetes Management: Is It Time to Bid Adieu? American Journal of Cardiovascular Drugs. 2023;23(6):601-8.

Fan L, Zhou W, Zhang L, Jiang D, Zhao Q, Liu L. Sitagliptin protects against hypoxia/reoxygenation (H/R)-induced cardiac microvascular endothelial cell injury. American journal of translational research. 2019;11(4):2099.

Wang X, Xiang J, Huang G, Kang L, Yang G, Wu H, et al. Inhibition of Podocytes DPP4 Activity Is a Potential Mechanism of Lobeliae Chinensis Herba in Treating Diabetic Kidney Disease. Front Pharmacol. 2021;12:779652. https:// doi. org /10.3389/fphar.2021.779652.

Zheng TP, Liu YH, Yang LX, Qin SH, Liu HB. Increased plasma dipeptidyl peptidase-4 activities are associated with high prevalence of subclinical atherosclerosis in Chinese patients with newly diagnosed type 2 diabetes: a cross-sectional study. Atherosclerosis. 2015;242(2):580-8. https://doi. org/10. 1016/ j. atherosclerosis .2015.07.042.

Xu Y, Fu EL, Clase CM, Mazhar F, Jardine MJ, Carrero JJ. GLP-1 receptor agonist versus DPP-4 inhibitor and kidney and cardiovascular outcomes in clinical practice in type-2 diabetes. Kidney International. 2022;101(2):360-8.

Bekiari E, Rizava C, Athanasiadou E, Papatheodorou K, Liakos A, Karagiannis T, et al. Systematic review and meta-analysis of vildagliptin for treatment of type 2 diabetes. Endocrine. 2016;52(3):458-80. https://doi .org/ 10. 1007/s12020-015-0841-1.

Scott LJ. Sitagliptin: A Review in Type 2 Diabetes. Drugs. 2017;77(2):209-24. https:// doi. org/10.1007/s40265-016-0686-9.

Sharma A, Paliwal G, Upadhyay N, Tiwari A. Therapeutic stimulation of GLP-1 and GIP protein with DPP-4 inhibitors for type-2 diabetes treatment. Journal of diabetes and metabolic disorders. 2015;14.

Sandoval D. Updating the role of α-cell preproglucagon products on GLP-1 receptor–mediated insulin secretion. Diabetes. 2020;69(11):2238-45.

Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of Dipeptidyl Peptidase 4 Inhibitors in Antidiabetic Treatment. Molecules. 2022;27(10). https:// doi. org /10.3390/molecules27103055.

Guo D, Liu J, Zhang P, Yang X, Liu D, Lin J, et al. Adiposity Measurements and Metabolic Syndrome Are Linked Through Circulating Neuregulin 4 and Adipsin Levels in Obese Adults. Front Physiol. 2021;12:667330. https://doi.org/10.3389/fphys.2021.667330.

Zhang J, Li K, Pan L, Teng F, Zhang P, Lin B, et al. Association of circulating adipsin with nonalcoholic fatty liver disease in obese adults: a cross-sectional study. BMC Gastroenterol. 2021;21(1):131. https://doi.org/10.1186/s12876-021-01721-9.

Tomasiuk R. Evaluation of Applicability of Novel Markers of Metabolic Syndrome in Adult Men. American Journal of Men's Health. 2022;16(4):1-10. https://doi. org/10. 1177/ 15 57 9883221108895.

Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, Moede T, et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell. 2014;158(1):41-53. https://doi.org/10.1016/j.cell.2014.06.005.

Lai Y-R, Chen MH, Lin WC, Chiu W-C, Cheng B-C, Chen J-F, et al. Leptin mediate central obesity on the severity of cardiovascular autonomic neuropathy in well-controlled type 2 diabetes and prediabetes. J Transl Med. 2020;18(1):396. https://doi.org/10.1186/s12967-020-02559-7.

Wei W, Liu H, Qiu X, Zhang J, Huang J, Chen H, et al. The association between serum adropin and carotid atherosclerosis in patients with type 2 diabetes mellitus: a cross‑sectional study. Diabetol Metab Syndr. 2022;14(1):27. https://doi.org/10.1186/s13098-022-00796-y.

Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018;39(7):1176-88. https://doi.org/10.1038/aps.2018.40.

Perry RJ, Petersen KF, Shulman GI. Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis. Diabetologia. 2016 ;59 (5) :933-7. https:// doi.org/ 10. 1007/ s00 125-016-3909-4.

Wang X, Ke J, Zhu Y-j, Cao B, Yin R-l, Wang Y, et al. Dipeptidyl peptidase-4 (DPP4) inhibitor sitagliptin alleviates liver inflammation of diabetic mice by acting as a ROS scavenger and inhibiting the NFκB pathway. Cell Death Discovery. 2021;7(1):236. https://doi.org/10.1038/s41420-021-00625-7.

Zheng W, Zhou J, Song S, Kong W, Xia W, Chen L, et al. Dipeptidyl-Peptidase 4 Inhibitor Sitagliptin Ameliorates Hepatic Insulin Resistance by Modulating Inflammation and Autophagy in ob/ob Mice. Int J Endocrinol. 2018;2018:8309723. https://doi. org/10. 1155 /2018/8309723.

Tang X, Li J, Xiang W, Cui Y, Xie B, Wang X, et al. Metformin increases hepatic leptin receptor and decreases steatosis in mice. J Endocrinol. 2016;230(2):227-37. https:/ /doi. org/ 10. 1530/ joe -16-0142.

Derosa G, Carbone A, Franzetti I, Querci F, Fogari E, Bianchi L, et al. Effects of a combination of sitagliptin plus metformin vs metformin monotherapy on glycemic control, β-cell function and insulin resistance in type 2 diabetic patients. Diabetes Res Clin Pract. 2012;98(1):51-60. https://doi. org/10. 1016 /j. diabres.2012.05.022.

Abbas NA, El. Salem A. Metformin, sitagliptin, and liraglutide modulate serum retinol-binding protein-4 level and adipocytokine production in type 2 diabetes mellitus rat model. Canadian Journal of Physiology and Pharmacology. 2018; 96(12):1226-31.

Prakash S, Rai U, Kosuru R, Tiwari V, Singh S. Amelioration of diet-induced metabolic syndrome and fatty liver with sitagliptin via regulation of adipose tissue inflammation and hepatic Adiponectin/AMPK levels in mice. Biochimie. 2020;168:198-209.

Foley JE, Ahrén B. The Vildagliptin Experience - 25 Years Since the Initiation of the Novartis Glucagon-like Peptide-1 Based Therapy Programme and 10 Years Since the First Vildagliptin Registration. European endocrinology.2017;13(2):56-61. https:// doi .or g/10.17925/ee.2017.13.02.56.

Ahrén B. Novel combination treatment of type 2 diabetes DPP-4 inhibition + metformin. Vascular health and risk management. 2008;4(2):383-94. https : // doi.org/10.2147/vhrm.s1944.

Furuhashi M, Sakuma I, Morimoto T, Higashiura Y, Sakai A, Matsumoto M, et al. Differential Effects of DPP-4 Inhibitors, Anagliptin and Sitagliptin, on PCSK9 Levels in Patients with Type 2 Diabetes Mellitus who are Receiving Statin Therapy. Journal of atherosclerosis and thrombosis. 2022;29(1):24-37. https:// doi. org/ 10.5551/jat.58396.

Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Frontiers in Molecular Biosciences. 2023;10. https:// doi. org /10. 3389 /fmolb.2023.1130625.

Piccirillo F, Mastroberardino S, Nusca A, Frau L, Guarino L, Napoli N, et al. Novel Antidiabetic Agents and Their Effects on Lipid Profile: A Single Shot for Several Cardiovascular Targets. Int J Mol Sci. 2023;24(12):10164.

Zhang T, Tong X, Zhang S, Wang D, Wang L, Wang Q, et al. The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Front Pharmacol. 2021;12:731453. https:// doi. org/ 10. 3389 /fp har.2021.731453.

Meng J, Yan R, Zhang C, Bai X, Yang X, Yang Y, et al. Dipeptidyl peptidase-4 inhibitors alleviate cognitive dysfunction in type 2 diabetes mellitus. Lipids Health Dis. 2023;22(1):219. https://doi.org/10.1186/s12944-023-01985-y.

Gallwitz B. Linagliptin–-A Novel Dipeptidyl Peptidase Inhibitor for Type 2 Diabetes Therapy. Clinical Medicine Insights: Endocrinology and Diabetes. 2012;5:CMED.S7274. https:// doi. org /10.4137/cmed.s7274.

Kim KS, Lee BW. Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease. Clinical and molecular hepatology. 2020;26(4):430-43. https:/ /doi.org /10.3350 /cmh.2020.0137.

Zachou M, Flevari P, Nasiri-Ansari N, Varytimiadis C, Kalaitzakis E, Kassi E, et al. The role of anti-diabetic drugs in NAFLD. Have we found the Holy Grail? A narrative review. Eur J Clin Pharmacol. 2024;80(1):127-50. https:/ / doi. org / 10.1007/s00228-023-03586-1.

Al-Kuraishy HM, Al-Gareeb AI, Albogami SM, Jean-Marc S, Nadwa EH, Hafiz AA, et al. Potential Therapeutic Benefits of Metformin Alone and in Combination with Sitagliptin in the Management of Type 2 Diabetes Patients with COVID-19. Pharmaceuticals (Basel). 2022 ;15(11). https:// doi.org /10. 3390/ ph1 511 1361.

Wei X, Bai Y, Wang Z, Zheng X, Jin Z, Liu X. Association between dipeptidyl peptidase-4 inhibitors use and leptin in type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):88. https://doi.org/10.1186/s13098-021-00703-x.

Komorizono Y, Hosoyamada K, Imamura N, Kajiya S, Hashiguchi Y, Ueyama N, et al. Metformin dose increase versus added linagliptin in non-alcoholic fatty liver disease and type 2 diabetes: An analysis of the J-LINK study. Diabetes Obes Metab. 2021;23(3):832-7. https://doi.org/10.1111/dom.14263.

Awal HB, Nandula SR, Domingues CC, Dore FJ, Kundu N, Brichacek B, et al. Linagliptin, when compared to placebo, improves CD34+ve endothelial progenitor cells in type 2 diabetes subjects with chronic kidney disease taking metformin and/or insulin: a randomized controlled trial. Cardiovasc Diabetol. 2020;19(1):72. https://doi.org/10.1186/s12933-020-01046-z.

Schiapaccassa A, Maranhão PA, de Souza M, Panazzolo DG, Nogueira Neto JF, Bouskela E, et al. 30-days effects of vildagliptin on vascular function, plasma viscosity, inflammation, oxidative stress, and intestinal peptides on drug-naïve women with diabetes and obesity: a randomized head-to-head metformin-controlled study. Diabetol Metab Syndr. 2019;11:70. https://doi.org/10.1186/s13098-019-0466-2.

Takeshita Y, Kita Y, Kato KI, Kanamori T, Misu H, Kaneko S, et al. Effects of metformin and alogliptin on body composition in people with type 2 diabetes. Journal of diabetes investigation. 2019;10(3):723-30. https://doi.org/10.1111/jdi.12920.

Takihata M, Terauchi Y. The efficacy and safety of luseogliflozin and sitagliptin depending on the sequence of administration in patients with type 2 diabetes mellitus: a randomized controlled pilot study. Expert Opin Pharmacother. 2019;20(17):2185-94. https://doi.org/10.1080/14656566.2019.1656717.

Dore FJ, Domingues CC, Ahmadi N, Kundu N, Kropotova Y, Houston S, et al. The synergistic effects of saxagliptin and metformin on CD34+ endothelial progenitor cells in early type 2 diabetes patients: a randomized clinical trial. Cardiovasc Diabetol. 2018;17(1):65. https://doi.org/10.1186/s12933-018-0709-9.

Matsushima Y, Takeshita Y, Kita Y, Otoda T, Kato K, Toyama-Wakakuri H, et al. Pleiotropic effects of sitagliptin versus voglibose in patients with type 2 diabetes inadequately controlled via diet and/or a single oral antihyperglycemic agent: a multicenter, randomized trial. BMJ open diabetes research & care. 2016;4(1):e000190. https://doi.org/10.1136/bmjdrc-2015-000190.

Kato H, Nagai Y, Ohta A, Tenjin A, Nakamura Y, Tsukiyama H, et al. Effect of sitagliptin on intrahepatic lipid content and body fat in patients with type 2 diabetes. Diabetes Res Clin Pract. 2015;109(1):199-205. https://doi.org/10.1016/j.diabres.2015.04.008.

Takeshita Y, Takamura T, Kita Y, Otoda T, Kato K, Wakakuri H, et al. Vildagliptin vs liraglutide as a second-line therapy switched from sitagliptin-based regimens in patients with type 2 diabetes: A randomized, parallel-group study. Journal of diabetes investigation. 2015;6(2):192-200. https://doi.org/10.1111/jdi.12269.

Takeshita Y, Takamura T, Kita Y, Takazakura A, Kato K, Isobe Y, et al. Sitagliptin versus mitiglinide switched from mealtime dosing of a rapid-acting insulin analog in patients with type 2 diabetes: a randomized, parallel-group study. BMJ open diabetes research & care. 2015;3(1):e000122.https://doi.org/10.1136/ bmj drc -2015-000122.

Downloads

Published

2025-12-20

Issue

Section

Review