Cilnidipine Alleviates Alpha‑naphthyl isothiocyanate -Induced Cholestasis in Rats

Authors

  • Thamer Abdulla Mohammed Ministry of Health, State Company for Drugs and Medical Appliances, Baghdad, Iraq.
  • Munaf H. Zalzala Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.31351/vol34iss4pp224-230

Abstract

Cholestasis is defined as a reduction or stagnation in bile secretion and flow. Inflammation results from blocked bile that leaks into the bloodstream and accumulates in the organs. It was postulated that cilnidipine would mitigate the liver damage linked to cholestasis by its confirmed farnesoid x receptor (FXR) activation. Hence, this study aimed to examine the impact and potential anticholestatic capabilities of cilnidipine in the rat’s model of cholestasis produced by α‑naphthyl isothiocyanate (ANIT), which is a widely used model that resembles human cholestasis. The white albino rats used in this investigation were separated into three distinct groups, with eight in each group. Negative control (Group I), in this group, rats get corn oil orally (1ml/kg) 48 hours before euthanized; Positive control (Group II), in this group, rats get a single dosage of Alpha-naphthyl isothiocyanate (ANIT) (100mg/kg) orally 48 hours before euthanized; Treatment group (Group III), in this group, rats get orally (cilnidipine 10 mg/kg) for seven successive days, on the fifth day, rats received a single oral dose of ANIT (100mg/kg) 48 hours before euthanized. The results demonstrated that cilnidipine pretreatment decreased the levels of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bile acids (TBA), direct bilirubin (DBIL), and total bilirubin (TBIL). Additionally, cilnidipine therapy also resulted in a decrease in oxidative stress and inflammatory mediators. 

In conclusion, cilnidipine alleviates cholestasis in rats, which ANIT induces, according to the findings.

How to Cite

1.
Thamer Abdulla Mohammed, Munaf H. Zalzala. Cilnidipine Alleviates Alpha‑naphthyl isothiocyanate -Induced Cholestasis in Rats. Iraqi Journal of Pharmaceutical Sciences [Internet]. 2025 Dec. 20 [cited 2025 Dec. 22];34(4):224-30. Available from: https://www.bijps.uobaghdad.edu.iq/index.php/bijps/article/view/3991

Publication Dates

Received

2024-07-22

Revised

2024-07-22

Accepted

2024-11-19

Published Online First

2025-12-20

References

Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25(7):1419–25.

Li T, Chiang JYL. Bile acid signaling in liver metabolism and diseases. J Lipids. 2012;2012.

Chiang JYL. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191.

Chen Z, Ma X, Zhao Y, Wang J, Zhang Y, Li J, et al. Yinchenhao decoction in the treatment of cholestasis: A systematic review and meta-analysis. J Ethnopharmacol. 2015;168:208–16.

Ma X, Zhao Y, Zhu Y, Chen Z, Wang J, Li R, et al. Paeonia lactiflora Pall. protects against ANIT-induced cholestasis by activating Nrf2 via PI3K/Akt signaling pathway. Drug Des Devel Ther. 2015;5061–74.

Mariotti V, Cadamuro M, Spirli C, Fiorotto R, Strazzabosco M, Fabris L. Animal models of cholestasis: An update on inflammatory cholangiopathies. Biochim Biophys Acta (BBA)-Molecular Basis Dis. 2019;1865(5):954–64.

Hirschfield GM, Heathcote EJ, Gershwin ME. Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology. 2010;139(5):1481–96.

Paolini M, Pozzetti L, Piazza F, Cantelli‐Forti G, Roda A. Bile acid structure and selective modulation of murine hepatic cytochrome P450–linked enzymes. Hepatology. 1999;30(3):730–9.

Paolini M, Pozzetti L, Montagnani M, Potenza G, Sabatini L, Antelli A, et al. Ursodeoxycholic acid (UDCA) prevents DCA effects on male mouse liver via up-regulation of CXP and preservation of BSEP activities. Hepatology. 2002;36(2):305–14.

Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem. 2001;276(42):39411–8.

Bodin K, Bretillon L, Aden Y, Bertilsson L, Broomé U, Einarsson C, et al. Antiepileptic drugs increase plasma levels of 4β-hydroxycholesterolin humans: Evidence for involvement of cytochrome P450 3A4. J Biol Chem. 2001;276(42):38685–9.

Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol. 1998;38(1):389–430.

Barone M, Maiorano E, Ladisa R, Cuomo R, Pece A, Berloco P, et al. Influence of ursodeoxycholate-enriched diet on liver tumor growth in HBV transgenic mice. Hepatology. 2003;37(4):880–6.

Corpechot C, Carrat F, Bahr A, Chrétien Y, Poupon R-E, Poupon R. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology. 2005;128(2):297–303.

Lindor KD, Kowdley K V, Luketic VAC, Harrison ME, McCashland T, Befeler AS, et al. High‐dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009;50(3):808–14.

Mohanty MK, Gupta SD, Bhatnagar V. Surgical outcome in relation to duct size at the porta hepatis and the use of cholagogues in patients with biliary atresia. Trop Gastroenterol. 2010;31(3):184–9.

Chiang JYL. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol. 2004;40(3):539–51.

Yang F, Tang X, Ding L, Zhou Y, Yang Q, Gong J, et al. Curcumin protects ANIT-induced cholestasis through signaling pathway of FXR-regulated bile acid and inflammation. Sci Rep. 2016;6(1):33052.

Chiang JYL, Ferrell JM. Bile acid biology, pathophysiology, and therapeutics. Clin liver Dis. 2020;15(3):91.

Eisenberg MJ, Brox A, Bestawros AN. Calcium channel blockers: an update. Am J Med. 2004;116(1):35–43.

Chandra KS, Ramesh G. The fourth-generation Calcium channel blocker: Cilnidipine. Indian Heart J. 2013;65(6):691–5.

Hsu C-W, Zhao J, Huang R, Hsieh J-H, Hamm J, Chang X, et al. Quantitative high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X receptor. Sci Rep. 2014;4(1):6437.

Amin K, Ip C, Sato B, Le T, Green CE, Tyson CA, et al. Characterization of ANIT-induced toxicity using precision-cut rat and dog liver slices cultured in a dynamic organ roller system. Toxicol Pathol. 2006;34(6):776–84.

FAIOLA B, PETERSON RA, KIMBROUGH CL, JORDAN HL, CULLEN JM. Faiola, B., Peterson, RA, Kimbrough, CL, Jordan, HL, Cullen, JM (2010). Acute ANIT Toxicity in Male IL-10 Knockout and Wild-type Mice. Toxicol Pathol 38, 745-55.(Original. Toxicol Pathol. 2010;38(6).

Desmet VJ, Krstulović B, Van Damme B. Histochemical study of rat liver in alpha-naphthyl isothiocyanate (ANIT) induced cholestasis. Am J Pathol. 1968;52(2):401.

Tanaka Y, Aleksunes LM, Cui YJ, Klaassen CD. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol Sci. 2009;108(2):247–57.

Yang T, Mei H, Xu D, Zhou W, Zhu X, Sun L, et al. Early indications of ANIT-induced cholestatic liver injury: Alteration of hepatocyte polarization and bile acid homeostasis. Food Chem Toxicol. 2017;110:1–12.

Atshan DA, Zalzala MH. Papaverine attenuates the progression of alpha naphthylisothiocyanate induce cholestasis in rats. Curr Res Pharmacol Drug Discov. 2024;6:100177.

Varagic J, Susic D, Frohlich ED. Cilnidipine improves spontaneously hypertensive rat coronary hemodynamics without altering cardiovascular mass and collagen. J Hypertens. 2002;20(2):317–22.

Nafeer SA, Zalzala M. Possible Amelioration of the Severity of Nutritional Steatohepatitis by Guggulsterone in Mice: guggulsterone and steatohepatitis in mice. Iraqi J Pharm Sci (P-ISSN 1683-3597 E-ISSN 2521-3512). 2019;28(1):17–23.

Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med. 2021;15(6):437–54.

Atshan DA, Zalzala MH. POSSIBLE PROTECTIVE EFFECT OF NICARDIPINE ON ANIT INDUCE CHOLESTASIS IN RAT. Farmacia. 2024;72(1).

Levitt MD, Hapak SM, Levitt DG. Alkaline phosphatase pathophysiology with emphasis on the seldom-discussed role of defective elimination in unexplained elevations of serum ALP–a case report and literature review. Clin Exp Gastroenterol. 2022;41–9.

Ommati MM, Niknahad H, Najibi A, Arjmand A, Alidaee S, Mazloomi S, et al. Cholestasis-associated pulmonary inflammation, oxidative stress, and tissue fibrosis: The protective role of the biogenic amine agmatine. Pharmacology. 2023;108(4):379–93.

Li Y, Yu H, Xu Z, Shi S, Wang D, Shi X, et al. Melatonin ameliorates ANIT‑induced cholestasis by activating Nrf2 through a PI3K/Akt‑dependent pathway in rats. Mol Med Rep. 2019;19(2):1185–93.

Zajic S, Damnjanovic Z, Stojanovic M, Visnjic M, Dencic S, Ilic D, et al. Biochemical markers in patients with extrahepatic cholestasis. Acta Medica Median. 2007;47(1):5–12.

Luo M, Wang L, Yao H, Wen Y, Cao D, Shen W, et al. Diagnostic and prognostic value of blood inflammation and biochemical indicators for intrahepatic cholestasis of pregnancy in Chinese pregnant women. Sci Rep. 2022;12(1):20833.

Mao H, Jin D, Lu M. Hepatoprotective Effect of S-ademetionine in the treatment of Intrahepatic Cholestasis through Farnesoid X Receptor Mechanism in Rats. J Biomol Res Ther. 2019;8:176.

Muchova L, Vanova K, Zelenka J, Lenicek M, Petr T, Vejrazka M, et al. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid‐mediated oxidative stress. J Cell Mol Med. 2011;15(5):1156–65.

Jurate K, Rimantas Z, Jolanta S, Vladas G, Limas K. Sensitivity and specificity of biochemical tests for diagnosis of intrahepatic cholestasis of pregnancy. Ann Hepatol. 2017;16(4):569–73.

Copple BL, Jaeschke H, Klaassen CD. Oxidative stress and the pathogenesis of cholestasis. In: Seminars in liver disease. © Thieme Medical Publishers; 2010. p. 195–204.

Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Molecules. 2023;28(16):5979.

Atshan DA, Zalzala MH. Possible Protective Effect of Low Dose of Papaverine on ANIT Induce Cholestasis in Rat. Iraqi J Pharm Sci (P-ISSN 1683-3597 E-ISSN 2521-3512). 2023;32(Suppl.):118–26.

Al-Khfajy WS, Kathem SH, Aboddy AA, Hatem SF, Zalzala MH, Arif IS. Farnesoid X receptor is an exciting new perspective target for treatment of diverse pathological disorders: Review. J Pharm Sci Res. 2018;10(9):2292–6.

Fuchs CD, Sroda N, Scharnagl H, Gupta R, Minto W, Stojakovic T, et al. Non-steroidal FXR agonist cilofexor improves cholestatic liver injury in the Mdr2-/-mouse model of sclerosing cholangitis. JHEP Reports. 2023;5(11):100874.

Abe M, Maruyama N, Suzuki H, Inoshita A, Yoshida Y, Okada K, et al. L/N-type calcium channel blocker cilnidipine reduces plasma aldosterone, albuminuria, and urinary liver-type fatty acid binding protein in patients with chronic kidney disease. Heart Vessels. 2013;28:480–9.

Fouda A, Youssef AR, Sharaf Eldin O. Comparative study of amlodipine vs. cilnidipine for the prevention of hepatic ischemia‐reperfusion injury in rat model. Fundam Clin Pharmacol. 2018;32(2):163–73.

Downloads

Published

2025-12-20

Issue

Section

Article